

An empirical investigation of the requirements process at

a successful company

Linus Ahlberg

linus.ahlberg91@gmail.com

Johannes Persson

ain09jpe@student.lu.se

Supervisor: Showayb Zahda, showayb.zahda@axis.com

Examiner: Krzysztof Wnuk (LTH), krzysztof.wnuk@cs.lth.se

2014-06-06

Master’s thesis work carried out at Axis Communications AB

for the Department of Computer Science, Lund University.

mailto:linus.ahlberg91@gmail.com

1

2

Abstract. Requirements engineering is often seen as an important activity in soft-

ware projects, since it impacts the projects' overall successfulness. However, with the

introduction of agile methodologies, requirements engineering has gone through sev-

eral changes. For example, rather than focusing on rigorous requirements specifica-

tions, agile methodologies advocate a more minimalistic approach where documenta-

tion, to an extent, is replaced by face-to-face communication. This trend is found at

the company examined in this study, since the company utilizes a requirements pro-

cess where the amount of requirements documentation is limited.

The aim of this thesis is to investigate the requirements engineering process used at

the case company, Axis Communications AB. The investigation includes a descrip-

tion of the company’s requirements process and the factors that facilitate the compa-

ny's use of the process. Moreover, the benefits and the challenges of the process are

explored, its scalability is examined and the viability of implementing a requirements

database in the company's context is considered.

The methodology used in this study is influenced by Grounded Theory and data

was collected mainly through interviews. Interview questions were created based on a

literature review of current research in the field. In total, 16 interviews were held.

Data obtained from the interviews was complemented with data from the introductory

meetings and team meetings in order to form the base for the results and analysis

presented in this thesis.

The study shows that the company’s requirements process does not demand re-

quirements documentation to be maintained indefinitely. Instead, requirements

knowledge is shared in other ways, e.g. through direct communication between col-

leagues. This approach is, for example, facilitated by the company’s culture and or-

ganization and yields many benefits and challenges. Currently, scalability does not

seem to be a major challenge. Finally, this report concludes that implementing a re-

quirements database is not a trivial task, claiming smaller modifications to the docu-

mentation approach could be a possible alternative for the company.

Keywords: agile, requirements engineering, lightweight, minimal documenta-

tion, platform development.

3

4

Acknowledgements

We would like to extend our warm thanks to examiner Krzysztof Wnuk for construc-

tive feedback and support throughout the study, as well as Showayb Zahda for giving

us the possibility of conducting the study in the first place and giving us support that

helped conducting the study successfully. Additionally, our thanks go out to the inter-

viewees of the study and the company in general, for a warm welcome and for always

putting time aside for us when we asked for it. Without this support this thesis would

not have been possible. Finally, we would like to thank Carmen Balsalobre for pa-

tience and support throughout the study.

5

Table of Contents

 Introduction ... 9 1

 Background and related works ... 11 2

2.1 Agile software development ... 11
2.2 Requirements engineering .. 13

2.2.1 Lightweight requirements .. 13
2.2.2 Agile Requirements Engineering and its practices 14
2.2.3 The challenges of Agile Requirements Engineering 16
2.2.4 Traditional Requirements Engineering ... 17

2.3 Software Product Line Engineering .. 19

 Case company .. 21 3

3.1 The requirements context ... 23
3.1.1 The requirements process – an introduction ... 23
3.1.2 The interface between orderer and team .. 25
3.1.3 More details regarding documentation written and used in

projects ... 26

 Research methodology ... 28 4

4.1 Grounded Theory and modifications ... 28
4.2 The main activities in the study ... 30

4.2.1 Pre-study .. 30
4.2.2 Data collection .. 32
4.2.3 Data analysis ... 33
4.2.4 Validation ... 34

 An elaboration on the company’s requirements process 35 5

5.1 The order and the orderer .. 36
5.2 The use of available sources for requirements knowledge 39
5.3 Quality requirements .. 43

5.3.1 How the evolution of quality aspects is managed 44
5.4 Benchmarking as requirements ... 45
5.5 Implications of the company’s requirements process 47

5.5.1 Understanding the intended behavior of a feature 47
5.5.2 Understanding which functionality is included in a piece of

software.. 48
5.5.3 Complementary information about requirements 49
5.5.4 Choosing what test cases to run... 51

5.6 A remark on the general quality of the software 52

6

5.7 The scalability of the requirements process 53
5.8 Ongoing improvements .. 56
5.9 Communication channels .. 60

5.9.1 Face-to-face communication .. 60
5.9.2 Documentation ... 61

5.10 Soft factors ... 64
5.10.1 New employees .. 64
5.10.2 Knowledge sharing ... 65
5.10.3 Understanding the big picture.. 67

 Discussion .. 70 6

6.1 Research questions ... 71
6.1.1 RQ1: What constitutes the requirements process used at Axis

Communications AB? ... 71
6.1.2 RQ2: Are there any factors at Axis Communications AB that

facilitate software development with the current requirements
process? .. 73

6.1.3 RQ3: What benefits does Axis Communications AB gain from
using the current requirements process? .. 74

6.1.4 RQ4: What challenges does Axis Communications AB face due to
the use of the current requirements process? 76

6.1.5 RQ5: What can be said about the scalability of the requirements
process used at Axis Communications AB? .. 79

6.1.6 RQ6: Would the implementation of a requirements database be
a viable option for Axis Communications AB? .. 80

6.2 Threats to validity and limitations ... 82
6.3 Future work.. 84

 Conclusion ... 84 7

 References ... 86 8

A. Division of responsibility during the thesis work 90

B. Interview instrument ... 91

B.1 For developers.. 91
B.2 For testers .. 92
B.3 For product managers ... 94

C. Organizational distribution of interviewees 97

D. Assertions .. 98

7

D.1 Tags from Firmware Platform.. 98
D.2 Tags from QA... 104
D.3 Tags from product managers/specialists 108

8

9

 Introduction 1

The processes and activities within Requirements Engineering (RE) are often seen

as critical for the successfulness of a software project. For example, studies have

shown that inadequate RE is the main reason for software projects' failures [3] [34].

Consequently, much has been written on how to do RE in a good way. Although

much work has been done, there is still controversy on how RE should be conducted

in order to reap the benefits at a minimal cost. The undertaking of finding one process

or a single set of practices that can be used more generally is, however, made substan-

tially more difficult when taking the various contexts and needs of different compa-

nies into account.

With the introduction of agile methodologies, RE has gone through somewhat of a

transformation. Instead of the rigorous requirements specifications advocated in the

traditional, document driven software development, agile methodologies advocate a

minimalistic documentation approach. Where traditional software development fo-

cuses on documentation and rigorous processes, agile methodologies focus on face-to-

face communication and people. This has caused a change of direction in RE, not

least within companies applying agile principles. Requirements specifications have, at

least to some extent, been replaced with backlogs and burndown charts. Iterative de-

velopment and frequent releases, applied in agile, have shortened the feedback loops,

allowing customers to change their mind during the development process. Continuous

prioritization of development activities has been utilized in an attempt to maximize

business value. All of these changes have impacted the view of RE today.

As the area of RE is evolving rapidly, empirical research on RE processes in top-

of-the-line companies are a useful source of new ideas and concepts. In this regard,

the research in this study seeks to investigate the RE process at Axis Communications

AB. Specifically, the process at the company is interesting from an RE perspective

due to its limited amount of requirements documentation. Currently at the company,

no pure requirements documentation is maintained after the end of development pro-

jects working towards a software platform. This approach creates several interesting

challenges, which the company deals with through various methods.

This thesis explores the RE process at Axis Communications AB, treating the con-

cepts and methods relating to this process. For the company itself, the study aims to

give an overview of the process as well as an analysis of the benefits and challenges

associated with it. For the research community, the study aims to present interesting

concepts relating to the company’s requirements process and some explanation of the

measures that the company is taking in order to facilitate efficient software develop-

ment. Thus, the research questions for this thesis are the following:

RQ1: What constitutes the requirements process used at Axis Communications

AB?

10

RQ2: Are there any factors at Axis Communications AB that facilitate software

development with the current requirements process?

RQ3: What benefits does Axis Communications AB gain from using the current

requirements process?

RQ4: What challenges does Axis Communications AB face due to the use of the

current requirements process?

RQ5: What can be said about the scalability of the requirements process used at

Axis Communications AB?

RQ6: Would the implementation of a requirements database be a viable option for

Axis Communications AB?

The study was structured so that the scope would enable as much of a holistic per-

spective as possible of the requirements process within the company. However, the

scope of this thesis is limited to the platform organization of Axis Communications

AB, as well as, to some extent, other departments closely related to it. Therefore, the

requirements process analyzed is the process as conducted by the platform organiza-

tion at the company. Also, the process was studied as-is and information about any

previous state of the process is therefore not treated in detail. The study examines

relations between primarily development, product management and Quality Assur-

ance (QA), but other activities have also been briefly examined.

Since this study explores the requirements process used at the company, documents

which were considered not to relate to requirements are either not treated at all or only

treated with little detail. Also, due to the aim of having a holistic perspective, no limi-

tations have been put on what areas of RE that will be considered. In other words, any

RE topic that is relevant to the company’s requirements process has been taken into

account. This includes the relevance of requirements for QA activities and how those

activities are affected by the requirements process.

The structure of the sections in this report is as follows. Section 2 presents the re-

sults from the literature review performed in the study. Section 3 introduces the com-

pany and the requirements context. Section 4 treats the research methodology that was

used in the study, giving some detail on the reasoning in choosing the specific meth-

od. Section 0 holds the results from the data collection and analysis phases. Section

5.4 summarizes the answers of the research questions and includes a discussion of

limitations and future work. Finally, section 7 contains the conclusions of this study.

As this is a collaborative master’s thesis, responsibility of the different activities

was divided between the authors of this study. This division can be found in Appen-

dix A.

11

 Background and related works 2

This section aims to give a background and present the related works for the three

main topics that were found to be relevant for this study. Firstly, the practice called

agile software development is presented, including its main benefits and challenges.

Secondly, the use of RE in software development is discussed. This includes explor-

ing lightweight requirements as well as investigating both agile and traditional RE.

Lastly, previous research within software product line engineering is treated.

2.1 Agile software development

The practice of agile software development, below referred to only as ‘agile’, is an

alternative approach to traditional document-centric development [60], providing

fundamentally different ideas about how to successfully develop software [9]. The

reasons for the evolution of agile were many, including general resistance against

document heavy processes and the challenge of changing requirements [14] [38].

When the speed of changes increased, caused by volatility factors such as customers

not knowing exactly what they wanted, traditional development processes faced a

major challenge [12].

Since the introduction, agile has grown popular in the software industry. This pop-

ularity is sometimes seen as a proof of the relative benefits of agile, but the methods

within agile have also received criticism [38]. The success has been explained by the

skill of the selected people using agile [22], and several weaknesses have been identi-

fied. The weaknesses include having insufficient documentation [30] [49], neglecting

the need for spending effort on architecture and its specification [20] as well as not

handling quality requirements, also known as non-functional requirements , adequate-

ly [24] [56].

There are many methods included in agile software development, e.g. eXtreme

Programming (XP), Scrum and Agile Modeling. The different methods can be used as

a basis to tailor a specific process after the needs in the current organization and/or

task [5]. This is possible since all agile methods are not on the same abstraction level.

For example, XP relates more to the daily programming work of a developer [8] [41]

[42], while Scrum focuses more on how to coordinate and organize a team [57]. Other

methods within agile include Crystal [55], Test Driven Development (TDD) [41] and

Lean software development [39]. From these core methods, much effort have been

directed towards extending and improving the methods to, for example, become com-

patible with software product line concepts [19] and handle various elements of the

software process in a better way (e.g. agile prioritization [45] and agile release plan-

ning [29]).

12

The principles of agile software development have been presented and explored

many times [5] [9] [41] [47] [49] [55]. The complete picture of agile software devel-

opment is out of the scope of this thesis, but some of the most relevant concepts will

be elaborated on. The principles revolve around elements such as working in an itera-

tive fashion [36], having close interaction with the customers [43] and providing

business value as early as possible in a project [13]. There are challenges, however, in

how to interact with the customer representative(s) [42], the need for skilled practi-

tioners [43] and how to handle the minimal documentation by spreading knowledge

throughout the team during elicitation [55] and validation [27] activities.

One of the core principles of agile is the notion of self-organizing teams. This is

advocated in the agile manifesto [9], and is also mentioned in both XP (“empowered

teams”) and Scrum [5]. The idea is to put trust into the competence of agile teams,

thereby enabling them to tailor the process they follow after their specific needs and

environment [32]. Researchers have claimed that self-organizing teams is an im-

portant factor for the success of agile projects [31].

Agile has been shown to have several benefits, although the view of agile as the

best way of developing software has been debated. The advocators claim that agile

methods increase the visibility of a project’s progression past the early stages [13] and

give the customer business value faster because of the iterative way of working [13],

which has also been shown to reduce risks [41]. Other benefits of agile include the

removal of unnecessary documentation by face-to-face communication [14], higher

quality of the software, and increased customer satisfaction [41] e.g. due to the way

agile embraces and adapts to changes in requirements [13]. The communication be-

tween business people and engineers has also been shown to improve when using

agile practices [10]. Finally, a small increase of the methodology used in a project can

impact the costs significantly [15]. Therefore, if people can communicate easier, e.g.

through working in smaller teams, the development costs will decrease [15].

A lot of challenges and weaknesses have also been shown. The critics have pointed

to the minimalism of documentation in agile, for example arguing that documentation

reduces the knowledge loss when team members become unavailable [49] and that a

lack of documentation is one of the main causes for fast deterioration of quality in

software [30]. Additionally, motivated and skilled people, which are preferred in agile

[9] [52], are not always available and can thus be used as an argument for more tradi-

tional processes [17] [52].

Furthermore, the agile methodologies have been shown to be difficult to scale, due

to distributed development [49] and other scalability factors [5]. Some outright claim

that agile methods do not scale [17] and that they only are viable in small teams [55].

The research that covers large-scale agile suggests that one way to handle scalability

is to combine and tailor different agile methods with more traditional processes on a

situational basis [5] and preserve company specific key processes [52]. The research

13

also deals with specifically scaling agile methodologies, such as how to coordinate

several Scrum teams in parallel by dividing tasks from a master backlog to smaller

team backlogs [52]. Ultimately, the large-scale implementation of agile software de-

velopment is, however, still a major challenge in the industry. For that reason, case

studies on successful large-scale companies exploring new possibilities in structuring

agile processes are desirable.

2.2 Requirements engineering

This section treats lightweight requirements and the various approaches of working

with requirements, specifically agile RE and traditional RE. As agile RE has a higher

relevance for the work in this study, this topic contains a more detailed discussion of

the practices and their implications as well as challenges within agile RE.

2.2.1 Lightweight requirements

During the literature review only one study [60] was found that provides a defini-

tion of “lightweight requirements”. This study presents a number of criteria that de-

fines “lightweight requirements”. These criteria include that requirements are elabo-

rated just-in-time, that techniques such as prototypes are used for eliciting and validat-

ing requirements and that requirements are iteratively validated in a certain manner.

However, this definition is only applicable within the context of requirements docu-

mentation and not in the context of requirements engineering. Moreover, one study

[26] describes “lightweight documentation” as an approach where documents are

rarely maintained. This description is aimed at all software documentation, require-

ments included. Regarding the use of the term “lightweight requirements”, another

study [18] uses it without a definition. Instead the study presents a concept called

“Story-Wall”, which it claims to be a lightweight way of managing requirements.

Several other studies [23] [24] [25] [42] [56] uses the term “lightweight” in a re-

quirements context. One of these [23] claims that requirements representation meth-

ods in non-traditional RE, e.g. user stories, can be considered to be lightweight. Also,

several studies present different methodologies related to requirements which they

claim to be lightweight [24] [25] [56]. One of the studies [56] proposes a methodolo-

gy for eliciting and analyzing quality aspects. The authors of the study argue that the

methodology is lightweight since it limits the number of quality aspects that are fo-

cused on rather than to document a comprehensive and detailed specification of quali-

ty requirements. Thus, it minimizes the amount of information that needs to be gath-

ered about quality aspects.

The literature review showed that the term “lightweight” is not widely used in the

RE community [23] [24] [25] [42] [56] [60]. Moreover, the occurrence of the specific

term “lightweight requirements” is even rarer [18] [60] and only one of the studies

[60] provides a definition of it. Instead, it seems like other terms are used in order to

convey the meaning of lightweight. For example, one study [42] claims agile is a

14

lightweight methodology. Therefore, agile RE is interesting also from a lightweight

requirements perspective. This is the reason for further exploring agile RE in the fol-

lowing sections.

2.2.2 Agile Requirements Engineering and its practices

Agile RE has in recent years spun out as an alternative way of doing RE [17]. The

method evolved due to the inherent difficulty in specifying all the requirements up-

front [60], which partly can be explained by the customer’s inability to state its needs

at an early stage of a project [12]. This leads to changing requirements in later stages

of the development cycle [54], putting the project at higher risk [55]. Rapid changes

are common in software projects [12] and are one of the most common reasons for

project failure [55]. Agile RE mitigates this risk by working in an iterative fashion

[60], which means that requirements emerge iteratively in short stages during devel-

opment [44] [45]. According to one study [58], this means that the requirements spec-

ification should be released frequently in smaller independent and functional parts.

Frequent releases also makes it possible to acquire customer feedback earlier in the

project than when using traditional approaches and improve the customer’s under-

standing of the software [60]. Other benefits of agile RE include better customer rela-

tions [54] and reduced scope creep [10].

Agile RE advocates practices such as continuous prioritization and prototyping

[14] [46]. Continuous prioritization means requirements are prioritized between the

iterations [14] [45] [46] [55]. The requirements are solely [45] [46], or at least mainly

[14], prioritized according to business value, which means the features with the high-

est business value are implemented first. Prototyping is on the other hand used in

order to elicit and validate requirements [60]. Through prototypes the communication

with the customer is simplified and the requirements can be refined [46]. Also, the

frequent communication between customer and development team, advocated in agile

RE, acts as means of validating the product [46].

It is a fact that real life projects cannot provide complete requirements documenta-

tion due to limited resources [43]. Instead of aiming for perfect requirements agile

principles focus on specifying “good enough” requirements [2], i.e. the realizable

requirements which bring the most value to the customer [2] [58]. Furthermore, agile

RE directs efforts to the requirements which yield the highest business risk [58].

In general agile RE handles this incompleteness by being less focused on docu-

mentation than traditional RE [22] [43] [55] [60]. Agile principles advocate face-to-

face communication [24] and customer involvement in order to share knowledge [18]

[17]. Research [15] has shown that face-to-face communication is more effective and

efficient than documentation when communicating in small teams, thus reducing the

overall development cost. However, the study does not identify the implications of

having a focus on face-to-face communication in a larger scale. Another study [26]

15

shares the view of documentation as a communication medium, for example stating

that there may still be value in outdated documents. The authors of the study argue

that this is a reason to focus on that documents are easy to create rather than easy to

maintain. The study proposes lightweight documentation, such as photos of white-

board drawings, as effective means of documentation. Other lightweight documenta-

tion techniques include user stories, which have the objective of reducing the cost

associated with requirements elicitation and requirements management [20].

There are different opinions regarding the amount of documentation needed in ag-

ile contexts. Some claim “well-written source code is self-documented” [55] and

therefore no more or a minimal amount of documentation is needed [49] [55], while

others argue that documentation of some sort is used in many of the agile principles

[43]. Nevertheless, it is apparent that agile methods aim to reduce the amount of un-

necessary work, requirements documents included [41].

One of the agile requirements documentation techniques is the product backlog.

The backlog is central in some agile RE practices, since it works as a continuously

changing requirements specification [43]. It is filled with high level requirements,

such as user stories [43], which are used for communicating with the customer [46]

[60]. In essence, user stories are scenarios written in plain text [20] that are placed in

the backlog [45] and prioritized [17] by the product owner. Through inter-team com-

munication the user stories can be broken down into more detailed requirements [17]

[27] [60]. This involves the whole development team, which means knowledge can be

shared without the use of documentation [27] [55].

One of the main reasons to why agile RE uses lightweight techniques such as user

stories, is the wish of elaborating the requirements just-in-time, right before the actual

implementation [10] [23] [60]. By this point, the understanding of the customer needs

is better [60] and the requirements are less likely to change [10]. Not only does this

reduce the amount of requirements documentation which becomes obsolete in envi-

ronments of rapid change [17]. It also reduces the amount of time wasted in develop-

ment trying to implement incorrect requirements, which can lead to unnecessary

source code, higher complexity and higher costs associated with maintenance [55].

Agile RE has proved to be an interesting research field and many studies have been

carried out in order to improve its applicability, effectiveness and efficiency. Methods

improving the agile RE process in general have been proposed [47] [57], as well as

several techniques supporting lightweight requirements documentation [17] [18] [30]

[33] [49] [51] [60]. Other studies argue that the amount of documentation needs to be

tailored according to the specific project and its context [15], and some even argue

that certain agile RE methods only are applicable in certain contexts [43] [52] [55].

More documentation, with greater detail, is in general needed for new systems, newly

formed teams, large or distributed teams and for systems with high criticality [13]

[55]. However, based on the literature review performed in this study, not much re-

16

search has been done on how lightweight documentation actually is implemented in

large-scale agile RE, and how the implementation of lightweight documentation af-

fects the company. Therefore, case-based research on lightweight documentation in

an industrial setting could bring value to the research field of agile RE.

2.2.3 The challenges of Agile Requirements Engineering

Many concerns have been raised about the agile RE way of working, both on a

general level and relating to specific agile practices and methods. For example, the

heavy dependence on customer interaction has been seen as a challenge [14] and

some argue that agile methods assume too much about the level of contribution from

the customer [43]. This relates to the fact that there is an inherent difficulty in going

from high level user stories to implementation of actual code [52]. Also, while some

solutions for showing the successfulness of agile teams have been proposed [30],

managerial issues are still present because of the difficulty in getting time/cost esti-

mates for larger pieces of software in agile RE [14] [32]. More specific issues within

agile RE include that using prototypes can cause unrealistic customer expectations, as

well as the challenge of using refactoring to effectively evolve an architecture over

time [14]. It has also been shown that it can be difficult to get the development team

involved in the development and management of requirements, together with a diffi-

culty of getting the team to document the requirements [10].

Critics also argue that agile RE has a clear lack of documentation [30] [38] [42]

[43] [46] [49]. This is sometimes believed to cause knowledge loss when team mem-

bers become unavailable [43] [46] [49], but other [8] work claim that the knowledge

loss is mitigated through pair programming due to the fact that multiple people gain

knowledge of all source code. It has also been argued that a lack of documentation

makes maintenance more difficult [30] and in many cases the maintainer has to turn

to the source code or test cases in order to gain knowledge about the software [42].

About 40-60 % of the overall maintenance effort is believed to be linked to the task of

understanding the software [51]. Also, the few documents that do exist may not be

useful if they have not been updated along with source code during previous changes

[51]. Since documentation can support maintenance, it is important that developers

document code which is likely to cause future problems [41]. It has also been shown

that different documents are needed during development and maintenance [51]. When

maintaining software, documentation is used for giving an overview of the system at

hand [51]. If the documentation is too detailed people will not update it, which gener-

ates out of date documentation [51].

Another issue associated to the lack of documentation is that it makes introduction

of new team members more cumbersome [43]. New members will have many ques-

tions that good documentation could have answered [43]. Instead they have to ask

17

other team members, which slows down work for the development team as a whole

[43]. This problem might be solved by using the test cases [27]. The test cases repre-

sent the system and can be used as some kind of requirements specification for new

employees in order to understand the software [27]. Furthermore, if test cases are

developed early, they can be used to validate the requirements and find new require-

ments which have been overlooked in earlier development [27].

Aside from the challenges relating to a lack of documentation, Agile RE has been

accused for overlooking quality requirements [25], especially in early stages of devel-

opment [17] [24] [38] [45]. For example, it has been reported that using prototypes

may cause problems within areas such as scalability, security and robustness [14].

Inadequate attention paid to quality requirements may lead to several problems in

later development phases such as bad software quality [13] or late architectural

changes resulting in cost overruns and delayed projects [45]. The problem has been

addressed by many researchers. Some say the problem solves itself, since the devel-

opment team gets customer feedback after each iteration, including issues related to

quality requirements [55]. Others stress the importance of using techniques for elicit-

ing quality requirements early in development, before implementation [13]. Over the

years, several methods have been proposed with the purpose of handling the problem

of neglected quality requirements in a lightweight way [21] [24] [25] [56].

Thus, much has been said about the challenges which are linked to agile RE. These

include maintenance issues, problems with introducing new employees and overlook-

ing of quality requirements. However, more research is needed in order to see how

agile RE is done in practice, e.g. about requirements prioritization [6]. Based on this,

research might also be needed on how the challenges presented in this section are

perceived by companies in the software industry. Therefore, case studies focusing on

these aspects could extend the knowledge within agile RE challenges and counter-

measures.

2.2.4 Traditional Requirements Engineering

Traditionally, RE has been broken down into four different activities, specifically

elicitation, analysis, specification and validation [1] [43] [46]. Moreover, there is also

the element of Requirements Management [59], which for example is concerned with

the maintenance of requirements. In traditional software development, sometimes

known as phased development [36], RE as a whole has ideally been conducted sepa-

rately in the beginning of a new project with the aim of finding the complete set of

requirements to be implemented [17]. This approach rests on the assumptions that

mistakes found early are much less costly to fix, and that it is possible to find a com-

plete, stable set of requirements in the beginning of a project [43]. In section 2.1

above, work has been presented that indicates that the second assumption does not

18

always hold true, causing traditional RE to suffer, e.g. in cases of market volatility

[12] [19].

RE has traditionally been seen as a critical activity of software development [55].

This has resulted in a number of standards coming from the traditional RE viewpoint

[55], as well as a large amount of literature on techniques and guides on how to write

a good requirements specification [37] [59]. Some literature has listed a number of

“good qualities” for a requirements specification [37] [43]. For example, a good re-

quirements specification should, according to Lauesen [37], be “correct, complete,

unambiguous, consistent, prioritized, modifiable, verifiable and traceable”. However,

the necessity of these qualities has been questioned. For example, it has been claimed

that practitioners realize having a complete exhaustive requirements specification is

unrealistic and that tacit (unspecified) requirements are necessary [37].

The requirements specification acts as a comprehensive description of what the

specified software should do, containing both functional requirements and quality

requirements [7] written on many abstraction levels [28]. However, the requirements

specification is not the only used documentation that relates to requirements. Other

documentation include architectural and design specifications, as well as testing doc-

umentation [26]. These are all interesting from an RE perspective, since they supple-

ment the written requirements specification.

When comparing traditional RE with agile RE, a number of issues in agile RE are

handled adequately through the traditional approaches. For example, the challenges of

dependence on customer representatives, risks with minimal documentation or neglect

for quality requirements are less significant in a traditional RE context [14]. Addition-

ally, traditional RE gives greater guidance for developers on what to do, somewhat

reducing the need for skilled people, which is an important aspect of agile [43]. One

of the factors facilitating this guidance, namely documentation, might be more effi-

cient than face-to-face communication in some cases. More specifically, documenta-

tion is efficient when the documentation replaces the need of having to explain the

same thing to different people [43]. Regardless, agile RE has undoubtedly grown

popular over the past decade [38]. Several studies have shown the general benefits

and challenges of agile RE [7] [10], explaining the reasons for moving from tradition-

al RE [7]. Additionally, some studies claim that the choice of whether to use agile or

traditional RE depends on the situation [46].

While some statements has been made regarding the use of traditional RE practices

in agile development [7] [14] [46], it seems not much research has been done on their

practical applicability. Even though the core of traditional RE, with an emphasis on

up-front specification, clearly does not synergize with the agile practices, smaller

parts of traditional RE could possibly still be applied together with agile development

successfully in the industry. The reasoning that different processes have to be used

[46], or tailored [5], according to the current specific needs of a project/organization

19

is important in this regard. Basically, it means that the context in which RE is applied

influences the choice of whether to include elements of traditional RE into agile RE

or not. As little research has been found on this topic [5] [46], research on the practi-

cal implementation potential of RE practices in agile contexts is motivated.

2.3 Software Product Line Engineering

Software Product Line Engineering (SPLE) is a concept which is built on reuse of

existing software when creating similar products [19]. The core reasoning of SPLE is

that it can be economically rewarding to manage commonality in products that share

similar features [40].For this purpose, SPLE advocates putting effort into “upfront

long-term design” of the product line architecture [19] [40]. This provides a base for

exploiting the commonality of the product line (also called the product family) by

facilitating the reuse of common core-assets (the “platform” [40]) [19]. Managing and

developing the core-assets and product line architecture is referred to as Domain En-

gineering (DE) [20]. To handle product variability within product lines the core-assets

are extended and/or combined in different ways, thereby tailoring the functionality to

address the needs of specific products [19]. This type of work is instead referred to as

Application Engineering (AE) [20].

The main benefits of SPLE are that once a core-asset base is in place, the reusabil-

ity factor reduces the development effort needed to create new (similar) products [11]

[40]. This has shown to give multiple benefits [19], such as cost reductions and faster

cycle times when developing new products. Among these benefits, flexibility to

change is also presented. However, these changes need to be proactively anticipated

when designing the core-assets base [19] [20]. Consequently, flexibility in SPLE re-

fers mainly to “planned changes”, that can be foreseen with enough certainty to be

significant at the point in time where the core-assets are developed [19]. This means

that the planning of the product line architecture and core-assets is associated with

risks, since it needs a large initial investment in order to later provide the benefits of

SPLE [20]. For these reasons, organizations using SPLE in volatile markets face a big

challenge [19], and should thus adapt their processes depending on the market situa-

tion [40].

As a variant of SPLE, Agile Product Line Engineering (APLE) has gained more in-

terest during the last years. This concept, sometimes referred to as Agile Software

Product Line, focuses on combining elements between Software Product Line Engi-

neering (SPLE) and agile software development [19]. The idea of the concept is to

integrate principles from both fields in order to cover weaknesses in each of the ap-

proaches applied individually [20]. For example, agile software development faces a

challenge in the scalability of its principles, while SPLE has difficulties in trying to

handle volatile market conditions [19].

20

Studies have shown the combination of agile software development and SPLE

principles, into what is known as APLE, to be both feasible [4] [11] [20] [40] and

desirable [4] [19]. The general idea is that agile and SPLE complements each other.

From the SPLE point of view, one of the core benefits of agile is that it handles

changing requirements easily [19] [40]. Thus, agile can provide help when the market

is volatile or when developers lack knowledge within the DE phase of SPLE, which

both contribute to late and unanticipated changes [19]. On the other hand, agile has a

big challenge in the scalability [5] [49] of the principles and methods, which is an

area that SPLE might be able to provide support with [19].

The reasons and benefits for doing APLE are elaborated on by Diez et. al [19]. Ac-

cording to their work, the general advantages are:

 Reduced need of up-front investment in DE.

 Flexibility in volatile markets, where it is risky to commit to development

of a large core-assets base that may (at least partly) become obsolete due

to changes on the market.

 Ability to facilitate knowledge gain in cases where developers’ knowledge

of DE is lacking.

 Ability to use a combination of SPLE and agile software development

(APLE) instead of applying them individually, meaning a larger variety of

projects can use the method.

 Through use of agile, the possibility of reducing the time of the feedback

between “RE, development, and field trial in innovative businesses”.

Although the above studies have shown apparent benefits of APLE, there are chal-

lenges both on the higher levels (e.g. contradicting values) [19], as well as closer to

the actual implementation of APLE. One of the challenges is the idea of lightweight

documentation in agile, corresponding to the more document intensive approach in

SPLE where documentation helps handling maintenance and evolution of the core-

assets [4]. Secondly, there is an issue in that agile methodologies advocate a reactive

approach, while SPLE instead leans towards a proactive approach because of the need

of anticipating changes [4]. Thirdly, there are more implementation oriented issues in

e.g. how to handle traceability and maintenance [19].

More specifically, how to handle the architecture is an important issue in APLE, as

SPLE does much of it up-front while agile in general lets the architecture evolve itera-

tively [4]. The examined papers seem to treat this as one of the key challenges in this

area [4] [11] [19] [20]. While the research question still is largely unsolved [20], the

general idea seems to be to balance the both approaches, i.e. developing core-assets

through a more lightweight up-front architecture [4], which then can be iteratively

21

developed as needed [19] [20]. The architecture can also be used as a frame, within

which agile teams can solve issues in the way they prefer [11].

Because of these challenges, which relate to the successful implementation of the

APLE approach, more research on APLE and how to successfully combine SPLE

concepts with agile software development could be useful. This includes research on

more specific topics such as RE within this context.

 Case company 3

Axis Communications AB develops and manufactures network cameras, consisting

of both hardware and embedded software. In recent years, the business has been

growing fast and the company now operates on a global market as a market leader.

The organization is made up from over 1800 people worldwide, from which a few

hundred are involved in embedded software development. This software is developed

towards an open platform, which causes the company to prioritize clean and stable

APIs for its users.

The embedded software development follows an SPLE approach, which facilitates

reuse of code in a variety of different products. This is done through the Linux Firm-

ware Platform (LFP), which the code is integrated into. The platform itself contains

all functionality (of the products it is intended for) and uses configuration settings in

order to turn certain functionality on and off. Thus, the platform can satisfy the func-

tionality needs of many different products, using different configuration settings for

each product. In essence, each product has its own functionality configuration as well

as its own hardware capabilities. This creates a certain complexity in the development

of the LFP.

At Axis Communications AB, development of the platform and development of

specific software functionality for new products are divided into two different organi-

zations, as can be seen in Figure 1. The New Video Products department (NVP) uses

the functionality available on the platform when developing products, striving to min-

imize the amount of software changes done before integrating the software back to the

platform. However, some additional development is in many cases necessary in order

to provide new products with new functionality. In this case, development is done in

the product development department and integrated into the platform after the product

has been released. Thus, new functionality flows into the platform not only from the

department focusing on platform development, but also from NVP, creating interde-

pendence between the departments.

22

 Figure 1. The flow of functionality to the platform.

However, the main focus in this thesis is the platform organization, looking into

how its different parts perceive and are affected by the amount of requirements docu-

mentation available for the platform. This includes:

 Product Management – responsible for channeling market needs into re-

quirements for new software.

 Development teams – responsible for developing and maintaining the

software platform so that it meets the requirements.

 QA – responsible for testing the functionality on the software platform.

In total, the platform organization consists of 125-150 people that are co-located at

the company's main site. From these, the majority works in development teams, gen-

erally consisting of up to 10 people. Different teams are responsible for different

functional areas and each team mainly conducts projects in their own area. Because of

this division, the teams are referred to as “function teams”. The areas are for the most

part architecturally separated in order to limit the number of teams that are affected by

a project. One project manager and one technical lead are assigned to each project,

carrying the responsibility of leading the development work. Moreover, each project

has at least one assigned QA resource that participates in the project's activities and

writes test cases for the output of the developers.

23

For the most part, agile methods such as Scrum are used by the teams within plat-

form development. Agile methods are also used to a large extent by all departments

conducting development for the company’s market
1
. The projects in platform devel-

opment follow predefined guidelines for the development process (including how

requirements are handled), but are allowed to do changes to the process if the changes

are approved by all project stakeholders. This, in combination with the fact that the

process itself is continuously evolving, means different teams are working somewhat

differently. Sometimes they even work with different types of documentation, alto-

gether adding to the complexity of this study.

The responsibility of existing code is divided into two layers, namely Code Block

Architects (CBAs) and Code Block Maintainers (CBMs). The CBAs are responsible

for larger components, where they manage the overall architecture and design of their

areas. Below each CBA there are several CBMs, where each CBM is responsible for a

smaller portion of code, e.g. being responsible to review any changes made to these

code blocks. The CBAs and the CBMs that are tied to one functional area are normal-

ly part of the function team that is responsible for that area, but exceptions exist.

In general, the culture at the company leans towards spreading knowledge about

requirements verbally rather than through specific requirements documents. The

company values an open climate and encourages its employees to be communicative.

Informal communication is promoted, e.g. making it culturally accepted to ask ques-

tions and have discussions without booking formal meetings. Thus, much knowledge

is shared through discussions, even between departments, and helpfulness and team

spirit are emphasized.

3.1 The requirements context

This section describes the parts of the company's processes that are related to re-

quirements capture, prioritization, documentation and validation. As there is no ex-

plicit ”requirements process” for the platform development at the company, much of

the content in this section is based on the more general software development process.

The data in this section was extracted from company specific process documentation

as well as meetings and interviews that were held during the study.

3.1.1 The requirements process – an introduction

1 For more details see the study, available internally on Axis, by Jan Bosch & Helena H. Olsson

(september 2013): “Development Practices at Axis Communications”.

24

As can be seen in Figure 2, the business strategy and the roadmap work are the

starting points in the requirements process. At the business strategy level, senior man-

agement decides what is important for the company to focus on, setting the frames for

the later stages in the requirements process. In the next stage Product Management

creates a roadmap, where ideas that have been brought up are prioritized against each

other based on the business strategy. This process is repeated regularly in order to

keep the roadmap up-to-date. The roadmap is the source from which orders are writ-

ten. Each order represents a specific assignment formulated as high level require-

ments and forms the basis for the work that is conducted in a project. Orders are writ-

ten for work on both features and architectural enhancements. The orders are then

given to projects, where each project has one order and one orderer. The orderer's role

is to answer questions and take decisions when it is needed in the project. The orderer

is thus the main source of assignments (requirements) for the team and can be a per-

son from Product Management or an architect (CBA or System Architect) in the de-

velopment organization.

Figure 2. Overview of the requirements process from strategy to documentation.

During the course of a project, the requirements are broken down and implement-

ed. In the project, resources from QA are participating in team activities such as daily

standup meetings or workshops, writing system level test cases for the project and to

some extent participating in breaking down the requirements. Continuously during the

project, the team writes both project specific documentation and reference documen-

tation. However, when the project has been closed the project specific documentation

is not maintained anymore. Instead, the company focuses on maintaining test cases

and reference documentation. Here, the reference documentation aims to specify the

design and functionality for the LFP.

The existing specifications of requirements are largely contained in the different

project specific documents, where several different documents (e.g. order, SWO and

PRS) may contain requirements. As the project specific documentation is kept at dif-

ferent project sites and not maintained after the end of the project, the company does

not have a maintained collection of requirements. The written requirements in the

organization are not stored in a requirements database and the requirements documen-

tation is not kept in a common repository.

25

In practice other communication channels play an important role at the company,

giving employees some understanding of what constitutes the requirements even

without a comprehensive requirements collection. This will be further elaborated on

throughout the report.

3.1.2 The interface between orderer and team

Because the requirements in the order generally are on a high level, the team re-

ceives additional input to help them develop software that is in line with the orderer's

wishes. Thus, the order is merely the starting point, after which the team needs to

have additional contact with their orderer. In practice, the orderer often participates in

planning and status meetings as well as other activities performed by the team, in

order to be able to answer the team’s questions and follow their progress. Additional-

ly, the orderer reads some of the project documentation to ensure that the team's inter-

pretations are correct.

The close contact between a project and its orderer is facilitated by an iterative and

collaborative setting, where the team and the orderer both participate in activities such

as breaking down requirements and planning. The work with planning and scoping is

most intensive in the early phases of a project, where pre-studies, workshops, infor-

mal discussions and other activities can be performed. For example, this is done to

work out what the project should achieve, what conceptual solution should be imple-

mented and which assignments should be done first. From this, the team can estimate

how much time it will need to implement what the orderer wants from the project.

Through iterative planning the tasks are prioritized and ordered with the purpose of

maximizing business value. In other words, the most important tasks of a project are

performed first if possible. The iterative process also pressures the teams to deliver

functioning software that the orderer can examine and verify, ensuring that it reflects

the underlying market needs. Typically, this is performed through having a demo at

the end of each development cycle.

Even after the work in the planning phases of a project, the scope of a project is

always subject to change. It is up to the orderer to decide if a project's scope should be

extended or if it should be narrowed as the project progresses. Big changes to the

project's scope or changes that will delay the delivery of the project significantly are,

however, escalated to a steering group who then makes the decision for the project. In

a similar way, project time frames are handled, depending on how the orderer feels

about the project's performance. For example, a delayed project that is considered to

be doing valuable work will generally be allowed to carry on. Also, due to the itera-

tive work, a project that is closed before completion will generally have done partial

deliveries that are of value to the orderer, even if the initial scope was not completed.

26

3.1.3 More details regarding documentation written and used in projects

This section is mostly a walkthrough of the different documentation being used at

the company. Certain understanding of the documentation is preferred for the later

parts of this thesis. Table 1 gives an overview of the documents with the highest rele-

vance for the study. The rest of this section discusses the documents in more detail.

The order was described in the above section and will therefore not be treated in detail

again.

Project specific documentation refers to documentation produced in the project that

is not maintained after the project has ended. Reference documentation is on the other

hand not project specific, even though the documents might have been originally cre-

ated in a project. The idea is to keep the reference documentation up-to-date, reflect-

ing the current state of the software.

Generally, the different documents in Table 1 are written in different formats, e.g.

.doc, .pdf and.xml. The documents are stored in various places in the organization, i.e.

there is not one place that holds all the different documents. Some documents are also

copied and stored in several locations, for example both on project specific intranet

pages as well as in the company’s revision control system, Git.

Table 1. A summary of the most relevant documentation at the company.

Project specific doc-

umentation

Order The order is the initial written requirements that form the first input to a project.

Generally the requirements are on a high level.

Software

Overview (SWO)

The work with the SWO is conducted in order to get an overview of what the

project needs to do to understand its assignment. For example, needed pre-

studies are specified along with the architectural areas that are affected by the

project.

Product

Requirements Speci-

fication (PRS)

The PRS is a requirements specification for the scope of the project. The PRS

documents can look differently, depending on where in the organization the

document was created.

Backlog The backlog is used as a substitute to the PRS, currently being adopted by a few

teams at the company. The backlog can be owned by the orderer, who fills it

with prioritized work items. The team can then for each development cycle

implement as many of the highest priority items as possible.

Reference

documentation

Platform

Functional

Description (PFD)

The PFD is a functional description of the behavior of the software. While it

specifies details about functionality, it is not a requirements specification in the

traditional sense. Most of the teams have used the PFD at some point.

Capability Descrip-

tion (CD)

The CD is also a functionality description, on a similar (but not identical) level

to the PFD. The main differences are that the document is owned by Product

Management and that it is more market oriented than the PFD. Only some teams

27

have used this document yet and even fewer have used it after recent changes.

Platform Architec-

tural Description

(PAD)

The PAD is an architectural description, giving developers some details about

the design of different components in the software. This document contains no

requirements, but it serves to provide an understanding of how the system works.

Here follows an elaboration on some of the different documents, starting with the

project documentation. The SWO is an overview document of what the project should

do during its lifetime, including some kinds of early requirements. It also contains

information about the different activities that need to be performed, what architectural

areas are affected and who the responsible CBAs and CBMs for those areas are. Also,

the SWO specifies what the project does not know and what needs further investiga-

tion (e.g. through pre-studies). The document is in itself used as a tool for planning,

since it gives an overview of the project. It can also be read by the orderer to make

sure that the project's progress is satisfactory.

The PRS is a project specific specification of requirements, meaning it describes

what a project should achieve. The responsibility for creating and maintaining the

PRS during the project is taken by the project manager. Aside from pure require-

ments, the PRS can also specify the project's deliverables. This document is used in

many parts of the organization and while there is a template for it, different parts of

the organization and different project managers choose to write it somewhat different-

ly. A few orderers/teams have adopted the use of a backlog, replacing the more for-

mal and detailed PRS. The backlog can be owned and updated by the orderer, in con-

trast with the PRS which is owned by the team.

Regarding the reference documentation, the PFD is a description of the current

functionality, e.g. including web GUI mockups where applicable. Its description of

functionality is on a relatively high level and from a technical point of view. The PFD

is associated with its functionality and should, according to the process description in

the company, always be maintained. Corresponding to the PFD is the CD, which also

is a functional description. The CD is one of the newer documents and has so far only

been introduced in a relatively small scale. While the CD to some extent shares the

characteristics of the PFD, they are also different in a number of aspects. For instance,

the descriptions in the CD are to a larger extent from a market perspective. Also, the

scope of the documents can differ, with regards to the amount of functionality de-

scribed. Moreover, the PFD is maintained by the teams who change the functionality,

whereas the CD is owned by Product Management.

Even though most of these documents are created and maintained in the develop-

ment organization, other departments use them for their own purposes. For example,

QA uses the PRS and the PFD when writing test cases for the functionality imple-

mented in a project. Also, Technical Information Management uses the documenta-

tion when writing help pages, user manuals or other public information. The usage of

28

documentation in several different departments creates a certain complexity in under-

standing the purpose of the different documents, something that is discussed later in

this report (primarily in section 5.10.3 “Understanding the big picture”).

 Research methodology 4

The research in this thesis is exploratory, conducted as a flexibly designed case

study with influence from Grounded Theory [16]. As the primary data collection

method, semi-structured interviews were used. Interviews, generating qualitative data,

give richer results compared to quantitative methods (such as surveys), which instead

give more precise data [50]. Thus, the interview strategy was chosen, with semi-

structured interviews as the main data collection method. Semi-structured interviews

were chosen with regards to the exploratory nature of the research, giving some flexi-

bility regarding the precise questions asked. This research design, including its gen-

eral characteristics, is in line with the primary research strategies used for case studies

[50].

This section consists of two main parts, where section 4.1 presents Grounded The-

ory as a research methodology and how it was modified in order to make it adequate

for this research. Furthermore, section 4.2 presents and elaborates on the main activi-

ties that were conducted in this study, including pre-study, data collection, data analy-

sis and validation.

4.1 Grounded Theory and modifications

The methodology of this study emanated from a Grounded Theory perspective,

which is a research methodology developed “for the purpose of building theory from

data” [16]. The method was chosen due to its flexible, yet rigorous, design. This sec-

tion introduces Grounded Theory together with the modifications that were necessary

in order to use it in this study.

Grounded Theory seeks to generate well founded (grounded) theories through col-

lection and analysis of data in a certain fashion [48]. Two of the core points in

Grounded Theory that were also applied in this study, are theoretical sampling and

constant comparison [16]. Theoretical sampling means collecting data (samples) and

analyzing it iteratively, allowing flexibility in the choice of data sources and data

collection methods in order to aid the researcher in developing the theory [16] [48].

Constant comparison instead refers to the notion of always going back and forth in the

data, asking questions about the data as they are thought of [16]. This notion facili-

tates the evolution of a deeper understanding obtained through theoretical sampling,

where new questions can be answered continually through additional data collection.

29

This process repeats itself until the researcher feels that the theory is properly ground-

ed in the data and that new interesting pieces of information cannot be found [16].

For this study, Grounded Theory was deemed appropriate because of its explorato-

ry nature, where theoretical sampling could be used to gradually increase the level of

understanding of the studied phenomenon. It also enabled a more flexible collection

of data, since new questions could be asked in each interview. This approach signifi-

cantly increased the depth of the data as a whole and enriched the researchers' under-

standing of both the context and the phenomenon. This also resulted in that the inter-

views became less and less structured as the work progressed, as this was found to

give the richest data. At the same time, as more facts were uncovered, the initial focus

started to shift.

For the analysis of data, Grounded Theory uses a coding scheme including three

stages, namely open coding, axial coding and selective coding. Here, the purpose of

the open coding is to find concepts, which have a certain set of properties, as well as

dimensions along which these properties can vary. The next step is to perform axial

coding, which is the activity of finding the relationships between the concepts. Final-

ly, selective coding is the stage where a single core concept is decided upon, a con-

cept which should be tied to all the other concepts and give the theory as a whole the

biggest possible explanatory power. [16]

Due to the exploratory nature of this study, after some initial interviews it became

clear that the wide scope of the obtained data prevented the generation of a managea-

ble set of concepts using the pure open coding scheme in Grounded Theory. This

called for modifications of the coding procedures. Additionally, individuals were

found to perceive the process in different ways depending on where in the organiza-

tion they worked. Without the modifications that were applied to Grounded Theory,

this could have made the interpretation of data more complex.

The modification in this case was to generate statements instead of categories, con-

cepts, properties and dimensions, as prescribed in Grounded Theory. This narrowed

down both the amount of data in the codes and made it possible to compare view-

points efficiently, but did not negatively impact the scope of the work. Having state-

ments as the main unit of analysis also enabled comparison and contrasting of differ-

ent viewpoints, while at the same time getting information on what the process actual-

ly looked like, as well as what variations existed. It also allowed for direct corrections

of the obviously incorrect results, only recognizing that some interviewees had incor-

rect perceptions of the matter. In essence, this modification allowed the authors of this

thesis to react to the data continuously and only use the parts relevant for the research

at hand. Using these statements also worked as a way of condensing the data in each

interview, giving an overview of the complete data set.

Because the coding scheme was modified with regards to the open coding, neither

axial nor selective coding were applicable. However, full adherence to Grounded

30

Theory was not necessary since the goal of this study was not to derive cause-effect

relationships or to build a generalizable theory. Nevertheless, inspiration from the

concepts in Grounded Theory was used for further analyzing the data. For more de-

tails regarding the data analysis, read section 4.2.3 below.

4.2 The main activities in the study

The research was conducted in four activities, which are described on a greater de-

tail below. Even through the activities are divided into separate sections here, they

were not completely sequential in practice due to the procedures of Grounded Theory

research. The following activities were present in this study:

1. Pre-study, which consisted of a literature review and an initial study of the

company, including its requirements related processes and organizational

structure. The initial design and reviews of the interview instrument were

also performed here.

2. Data collection, which consisted of choosing interviewees, conducting in-

terviews, transcription activities and other work relating to obtaining and

extracting the data.

3. Data analysis, which consisted of generating statements from the data,

comparing these statements between the interviews and finally extracting

more profound findings from the data.

4. Validation, which consisted of various steps taken in order to validate the

findings.

4.2.1 Pre-study

This phase consisted of three main sub-activities, namely a literature review, a

study of the company as well as the creation of the interview instrument. The first two

activities were performed in order to provide a knowledge base, both of research

within the relevant topics and the company’s organization and processes. This sup-

ported the creation of the interview instrument, where the extracted knowledge was

condensed into a practical tool to help structure the interviews.

The literature review was carried out to explore previous research relating to the

context of the company. Primarily, the sources used for finding this research consisted

of the electronic databases Engineering Village
2
 and IEEE Xplore

3
. Snowball sam-

pling was then applied in two rounds, first on the base set of discovered literature and

then on the additional sources found during the first round.

2 http://www.engineeringvillage.com
3 http://ieeexplore.ieee.org/Xplore/home.jsp

31

Several different queries were used when searching the databases. The queries

were derived from the context the company was operating in and the topic of the case

study. The result of each query as well as the work of exploring references of existing

papers were documented so that it would be possible to evaluate the best search words

and the most promising areas to do additional queries within. The keywords were

chosen in order to find studies in the following research fields: large-scale agile de-

velopment, RE, SPLE and lightweight documentation. The scientific papers were

evaluated based on their general relevance to the case study and their publication date.

The papers found in the literature search were reviewed and the relevant content

was extracted into a spreadsheet. The spreadsheet contained the following categories:

 Prioritization based on relevance for the case study

 Main findings

 Findings related to documentation

 Useful quotes

 Limitations

 Challenges

Approximately 3000 scientific papers were found during the query searches. Of

these, over 650 papers were further examined. This yielded 23 relevant papers that

were summarized according to the above categories. Also, 21 more papers were found

and summarized during the snowball sampling. Additionally, 16 new references were

added during complementary literature searches. The final set of references included

60 items that were used in this study, of which 20 were journal papers and 18 were

conference papers.

Next, the company study was conducted in order to gain insight into the company’s

organization and processes. This was complemented with introductory meetings

across the organization, which resulted in a deeper understanding of the different roles

in the organization and how they relate to each other. In total, 17 introductory meet-

ings of approximately 15 minutes were held. Also, several team meetings were at-

tended in order to gain knowledge in the team’s internal processes.

The purpose of creating the interview instrument was to structure the interviews

and provide guidelines for their execution. The instrument was based on the research

questions and formulated and structured depending on the interviewee’s specific de-

partment and role. This was possible due to the knowledge gained during the compa-

ny study.

The questions in the interview instrument were continuously refined and rephrased.

Furthermore, their adequacy was reviewed by both the supervisor and the examiner.

The reviews resulted in a restructuring of the questions in order to better manage the

amount of questions and their scope.

32

After the initial reviews of the interview instrument, four pilot interviews were

held with the purpose of testing and evaluating the questions. Based on the results

from the pilot interviews, the interview instrument was reworked and restructured

once again in cooperation with the examiner. The results of the pilot interviews were

included in the data analysis. The final interview instrument, connected to the specific

departments and roles, can be found in Appendix B.

4.2.2 Data collection

The interviewees were chosen from different departments and teams, with the pur-

pose of getting a wide perspective of the company’s processes. The choices of inter-

viewees were based on the knowledge of the organization as well as recommenda-

tions and information obtained during introductory meetings and other interviews.

Caution was taken to find interviewees with different roles and experience, in differ-

ent places of the organization, in order to get the most comprehensive and reliable

data possible. It was stressed at the beginning of each interview that the answers were

going to be anonymized and not shared outside the interview. For use in this report,

the responses were first anonymized through the analysis process.

In total 16 interviews were held with different roles, see Table 2. Note that in this

table, the use of “senior” in the Role column only is based on whether or not the in-

terviewee has worked more than five years in the current role at the company. On the

other hand, the General experience column conveys the general amount of experience

in that role, thus not only limited to experience at the company. Also, the organiza-

tional distribution of interviewees is depicted in Appendix C.

Table 2. Interviewees' roles and experience.

Code Role General experience (years)

Da Developer 13

Db Senior Developer 8

Dc Developer 11

Dd Developer 10

De Senior developer 9

Df Developer 4

Dg Senior developer 9

Dh Developer 3

Di Senior developer 5

33

Dj Developer 6

PjMa Senior project manager 7

PdMa Product manager 1

PdMb Senior Product manager 6

Ta Senior tester 9

Tb Tester 8

Tc Tester 4

Each interview was booked for one hour each, but lasted between 36 minutes and

73 minutes. The interview instrument was used only as support for what areas to fo-

cus on rather than as a strict checklist. Additional questions, i.e. questions not speci-

fied in the interview instrument, were asked in order to elaborate on interesting

themes or to explore unanticipated areas during each interview. The discussions were

quite open in order to keep the responses uninfluenced and, thus, more credible. As

the understanding of the company increased, the interview instrument was not fol-

lowed as strictly, in accordance with theoretical sampling in Grounded Theory. The

interviews were recorded in audio format to enable a more comprehensive analysis of

interviewee responses in later phases of the study. All interviews except one were

held in Swedish.

After each interview, the answers were transcribed based on the recordings. The

length of the transcriptions varied between 2193 and 6570 words. These summaries

were stored together with additional notes about each interview and each interviewee,

e.g. experience, department, role. The summary of each interview was sent by mail to

the interviewee who was given an option to read it and give additional comments. The

team meetings and the introductory meetings that were seen as relevant for this study

were also transcribed and used.

4.2.3 Data analysis

Statements were used as the main unit of analysis, see section 4.1 “Grounded The-

ory and modifications”. The statements were extracted from the data based on rele-

vance and credibility, where the formulation of the statement reflected its characteris-

tics (e.g. whether it was an opinion, an experience or a suggestion, as well as the in-

terviewee’s certainty and other properties) and the surrounding contextual information

(e.g. earlier statements, tone of voice, position in the organization). These statements

essentially acted as summaries of the data and could then in later stages be compared

and contrasted against each other efficiently. Statements were extracted continuously

as the data was obtained and all interviews as well as the relevant meetings that had

been summarized in text were included in the final set of statements.

34

As the amount of data grew and larger patterns could be identified, the statements

were sorted into different sets based on department and function (platform develop-

ment organization, product management and QA). In these sets, the statements were

then sorted and structured in different ways. Essentially, combinations of (lower lev-

el) statements made up new high level statements, bringing the lower level statements

up to a more abstract level. To avoid ambiguity, these higher level statements are

referred to as assertions. The assertions were, just as the statements, formulated in

order to reflect the content of the underlying data (in this case the statements them-

selves), making each statement have an influence on the formulation of the assertion.

At this stage, care was taken to assure that the assertions had a high degree of “cor-

rectness”, e.g. giving assertions based on only a few statements a less distinct formu-

lation.

Since the assertions were derived from the statements from one department at the

time, the assertions could be used to compare the viewpoints of the different depart-

ments. This was useful in order to assess if employees from different parts of the or-

ganization generally had different perceptions of the process. In total, analyzing 861

unique statements generated 260 assertions. The assertions can be found in Appendix

D, but for anonymity reasons the specific underlying statements will not be presented

in this thesis.

During the data analysis, the assertions were both used as pieces of data and as an

index, allowing the researchers to find the underlying data on a specific topic. The use

of the condensed assertions gave the researchers a good overview of the data, aiding

the task of structuring the data into an outline. From this outline, detailed sections

were then written, where the authors could further investigate the assertions’ underly-

ing statements as well as the interview transcriptions. Thus, having full traceability

between assertions, statements and interview transcripts, navigation through the data

was significantly enhanced. This, in turn, allowed going back and forth in the data,

making comparisons between the assertions, statements and the transcriptions. These

comparisons also ensured that no erroneous interpretations were made – much in the

same spirit as the concept of constant comparison in Grounded Theory, presented in

section 4.1.

4.2.4 Validation

The results of the report were validated through several steps. Firstly, the supervi-

sor continuously reviewed the report as it was written. Secondly, the results of the

report were presented at the company, where a number of employees attended. In

connection with this presentation, open discussion of the results was also held.

35

 An elaboration on the company’s requirements process 5

This section presents the data regarding the company’s requirements process that

was collected and analyzed during the study. In the light of the data, potential impli-

cations and any conclusions that can be drawn, relating to the research questions, are

also discussed. The structure of this section is elaborated on in Table 3.

Table 3. A summary of the different sub-sections in this chapter.

Sub-section Description

5.1 The order and the

orderer

Discusses the current state of this interface as well as the implications. The
section brings up the characteristics of the communication between the orderers

and the developers as well as the nature of the order. The high level of the order

is elaborated on and some reasons for having this level are presented.

5.2 The use of availa-

ble sources for re-

quirements

knowledge

Reports on ambiguity regarding what is considered to be requirements at the
company. Discusses the use of different sources that may be used in a commu-

nication of requirements knowledge. These sources are, for example, documen-

tation, test cases and the products themselves, as well as sources like colleagues
and the code itself.

5.3 Quality require-

ments

Presents some details about how the company handles quality requirements and

what implications this approach has. The general theme is that quality require-
ments in many cases are not specified, causing QA to have some difficulty when

writing and running their test cases.

5.4 Benchmarking as

requirements

Describes a concept for specifying requirements that is used at the company.

Essentially, the requirement relates to an existing artifact, for example saying
“this version should not be worse than the old one”. Challenges with the concept

are also brought up and discussed.

5.5 Implications of the

company’s require-

ments process

Discusses four topics, namely:

5.5.1 Understanding the intended behavior of a feature, where the issue

of determining how a piece of software “should” behave is dis-

cussed. Also treats the significance of incorrect tickets and their con-

sequences.
5.5.2 Understanding which functionality is included in a piece of software.

Difficulties in this regard were experienced in both QA and Product

Management. The scope and consequences of the difficulties are dis-
cussed in this section.

5.5.3 Complementary information about requirements, where other infor-

mation related to a requirement except the requirement itself is dis-
cussed. This information can, for example, be information on what

importance the requirement has, who ordered it and what the ra-

tionale was for ordering it. This information can be important from
several aspects, as described in the section.

5.5.4 Choosing what test cases to run. QA experiences some difficulty in

choosing test cases for a piece of software. Underlying causes are
brought up and explained, for example low traceability between tests

and requirements/products and incomplete data from old test runs.

5.6 A remark on the

general quality of the

software

A short elaboration on how the quality of released software is perceived by the

employees at the company.

5.7 The scalability of

the requirements

process

Discusses this topic, as well as what activities the company currently is perform-

ing to deal with scalability. To summarize, this study cannot report on any
problems that are significant from a scalability point of view. Instead, the inter-

36

viewees tended to associate scalability with lightweight processes.

5.8 Ongoing im-

provements

Describes the improvements currently in progress at the company that are rele-
vant for this study. These improvements consist of work with automated tests

and automatically generated feature lists. Also discusses the impact of these

improvements.

5.9 Communication

channels

Discusses the use of face-to-face communication and documentation as commu-
nication channels at the company. Specifically treats the benefits of using face-

to-face communication and when it might not be appropriate, as well as the

main purposes of documentation, from an RE perspective, that were found in
the study.

5.10 Soft factors Brings up other, less tangible topics, namely:

5.10.1 New employees, which gives an understanding of what the process

of introducing new engineers looks like and whether or not require-
ments documentation is critical for this introduction.

5.10.2 Knowledge sharing, elaborating on how knowledge is shared be-

tween individuals. Also treats the challenge of being dependent on
knowledgeable individuals.

5.10.3 Understanding the big picture, where the emphasis on the employees

at the company to understand the “wide” perspective is brought up
and discussed. The concept is explained further and the implication

of having a clear focus on it is elaborated on in the section.

5.1 The order and the orderer

The orders are, as previously mentioned, the starting point for a project, containing

the project's assignment in written form. Two developers and one project manager

(Db, Dg, PjMa) found the order to be vague or unclear. As some developers (De, Dg,

Dh, Di) put it, the orders are on a high level, thus containing relatively little detail of

what should be done by the project. To make up for any uncertainties in the order, the

teams discuss the order iteratively and in close contact with their respective orderer.

One senior product manager (PdMb) and one developer (Dg) indicated that orders

originating from CBAs and System Architects generally are written on a more de-

tailed level. However, one developer (Dd) pointed to that unclear orders are not nec-

essarily a significant problem. Additionally, a project manager (PjMa) claimed that

breaking down the high level requirements through discussions and close contact with

the orderer facilitates knowledge sharing. This corresponds to statements from both

interviewed product managers (PdMa, PdMb), who confirmed that they tend to work

closely with their projects in order to aid the projects' understanding and make sure

their interpretations are correct.

One of the senior testers in QA (Ta) also claims that having high level orders actu-

ally can be beneficial from an organizational point of view:

“Nobody knows how it [the software] should work, really, and maybe that

is fine. I don't think it is a good idea to script everything in detail. That

people need to talk to each other and maybe be creative is perhaps better

than to always be super clear.”

37

- Ta

The high level of the requirements in the order has, however, seemingly increased

the dependence between the orderer and the project team. This is also indicated by a

developer and a product manager (Dg, PdMa). Experience might be one of the factors

influencing the dependence level, as implied by PdMa:

”The people I work with at [department] are great, they are senior enough

to be able to perform the task themselves. When I finally have managed to

explain what it is that I want to achieve, they are very independent. It is a

bit worse over at, mainly, the [platform department]. They are more used to

'you should write this thing like this' and then I come with something com-

pletely different. In this case, it is very much up to the project manager to

do the job and get the project to understand what they should do. […] I

think I am more deeply involved in those departments, they need more in-

put.”

- PdMa

The product managers that were interviewed (PdMa, PdMb) indicated that this de-

pendence is higher in the beginning of projects, when the team needs someone to

explain to them what the high level requirements are. Currently the dependence be-

tween orderers and their teams is perhaps not an issue on a daily basis, due to the

close contact that these parties have. However, the dependence on individual product

managers might not be ideal from a long term perspective. In other words, a sudden

loss of a product manager could mean significant impact on the work in the corre-

sponding teams. Nevertheless, according to the company’s annual report for 2013 the

personnel turnover of the company was less than 6% for that year, which a representa-

tive from HR claimed to be low compared to other companies (also indicated by pre-

vious work [35]). As turnover affects the overall significance of employees leaving

the company, a limited turnover might reduce the challenge in having dependence on

product managers. Additionally, previous research indicates that a significant depend-

ence on the “customer” is an inherent trait of agile RE [14] (see section 2.2.3 “The

challenges of Agile Requirements Engineering”). Therefore this dependence on the

product managers must be weighed against the benefits of using agile RE.

According to one of the product managers (PdMa), writing detailed technical re-

quirements in the order is neither seen as feasible nor desirable, from the perspective

of Product Management. Instead, the product manager prefers to write specifications

from the problem domain (what the product should be able to do) rather than how the

problem should be solved (how the software should be changed to satisfy the needs).

The fact that orders are generally written on a high level can partly be explained by

38

difficulties for product managers to know exactly what is needed from a technical

solution at an early point in time. Hence, one product manager (PdMa) favors flexible

solutions, such as agile development, where it is possible for the orderer to change the

requirements as the project progresses. This flexibility is also facilitated by having a

high level order, since a high level order makes it less troublesome to change the re-

quirements during the project. However, the flexibility of changing requirements

during the project also might result in deterioration of the accuracy of any estimates

done earlier in the project. Depending on the criticality of the estimations, this could

mean unwanted consequences. For example, several interviewees (Dg, Di, PjMa)

pointed to that incorrect estimates have caused difficulties in achieving the planned

integration dates, which is an issue since the company uses fixed integration slots for

the different teams. Thus, a delay for one team could possibly make other teams also

run late in the integration phase, as noted by one interviewee (PjMa).

A senior tester in QA (Ta) as well as one senior product manager (PdMb) ex-

pressed worries that individuals and teams may interpret details in a specification too

literally, either through taking something to the extreme just because it was written in

a specification or through over implementing the details just to get the system to be-

have exactly like the specification says. The product manager (PdMb) reasoned that

through letting a development team, being specialists in their specific area, work out

the solution that they find to be most appropriate, time and effort of implementation

may be reduced. In order to do this, the product manager thought it is helpful if the

developers understand the bigger picture of what they are developing, including the

perspective of both customers and other users (more on this in section 5.10.3 “Under-

standing the big picture”).

Many interviewees (Da, Db, Dd, De, Dj, Dg, PjMa) reported that they use demos

in their projects, a concept that helps the orderer to give early feedback on technical

solutions. In other words, demos give the orderer an idea of how the work in the de-

velopment team is progressing and how the current state of the solution is working.

As each demo increases the orderer's understanding of the technical solution ideas and

possibilities, deciding on what changes should be made (both long term and short

term) for the specific functionality becomes easier. A few developers (Db, De) noted

that performing demos more frequently has shortened the feedback loop with the

orderer, e.g. helping to catch changes early. However, one of these developers (De)

pointed out that doing demos does not assure that the orderer will not change his mind

in later phases of the project. According to two developers (Db, Dg), demos might not

be as useful for technical (non-visual) projects, in cases where the orderer is a product

manager. One of the developers (Db) explained that this is because product managers

require a graphical representation in order to fully understand the solution idea. How-

ever, apart from these less visual projects where doing demos might not be as success-

ful, no interviewees reported on any negative experience with conducting demos.

39

Therefore, the practice can as such be recommended where the orderer can validate

the demo through a GUI.

The impression of the authors is that Product Management plays an important part

at the company in the big perspective. Product managers are responsible for prioritiz-

ing work items for their teams, as well as handling estimations regarding effort. These

estimations of effort, although sometimes provided by the development organization,

is gathered and analyzed by product managers in order to plan future work. Through

balancing effort and value (prioritization), their task is effectively to maximize the

future profits for the company using the resources (developers) that they currently

have available.

5.2 The use of available sources for requirements knowledge

In traditional RE [59], a requirements specification is used in order to keep track of

functionality and behavior of a product or a piece of software. However, as described

in section 3.1 “The requirements context”, the main part of the company’s documen-

tation that contains requirements is project specific and not maintained after the pro-

jects have ended. Therefore the employees cannot depend solely on requirements

documentation, when trying to clarify what the correct behavior of the software is.

According to previous research (presented in section 2.2.3 “The challenges of Agile

Requirements Engineering”), the use of other sources is a common approach for find-

ing requirements knowledge in situations where the requirements documentation is

insufficient. For example, the research claims that code and test cases are often used

for this purpose.

When asked about how the correct behavior of the software is uncovered at the

company, all interviewees referred to several other sources than requirements docu-

mentation. Moreover, the views on what sources that constitute requirements differed

greatly among the interviewees. For example, following a discussion about a docu-

ment that previously was used to specify a project's purpose, a senior tester (Ta) stat-

ed:

“In some way this is also requirements documentation, but it is more like a

fluffy idea of why we are doing this. Then this might yield some use cases

on the problem that should be solved [by the project] and the use cases

yield more detailed requirements that yield a design specification […] and

in some way the line between what requirements are [starts to get

blurred].”

- Ta

40

Due to the varying perception of what constitute requirements at the company,

many sources containing requirements knowledge were identified during the inter-

views. These sources included documents and tests, as well as non-written

knowledge. Since all of these are used across the company for conveying require-

ments knowledge, they are interesting from a requirements perspective. One develop-

er (De) expressed the situation at the company like this:

“There is no perfect model. Axis has chosen not to have a formal require-

ments database in the same way that many other companies have. It is a bit

more, so to say, fleeting. On the whole, I think it works well. If we were to

document all the requirements, then we would have to keep them updated

as well. That would mean more work for us. Currently, the requirements

are on different levels; a project that develops new functionality and sets

the requirements, sure, in that case there are a lot of discussions and you

have to write things down in a good way to get all parties to understand

what you mean. […] Then we have the maintenance work. In that case it

can be hard for new employees, for example, like 'What are the require-

ments for this? Is it working correctly? How should it work?'. Then it can

be hard to look up as we do not really have a requirements database. How-

ever, the way it works at Axis is that you talk a lot with each other to get

that information. Because the information is there, but everything is not

written down. Someone knows something about how it should work.“

- De

In similarity to the above quote, the interviews revealed that developers talk to oth-

er employees in order to find out the requirements. Many of the developers (Da, Db,

Dc, De, Df, Dj) claimed that simply asking colleagues when trying to uncover the

expected functionality of the software is common. Some developers as well as a pro-

ject manager (Da, Db, Dd, De, Dj, PjMa) also mentioned that requirements are re-

fined during the projects through discussions in the team and with the orderer. The

project manager (PjMa) expressed that this works well, since it facilitates knowledge

sharing. However, after projects are completed, information about requirements is not

always available in written form. Therefore, this information is rather conveyed

through verbal communications.

A number of the developers (Da, De, Dj) said that they communicate verbally with

both product managers and other developers. Whereas product managers have an

overview of the functionality of the software, developers have more detailed

knowledge of specific functionality, especially the developers with CBA or CBM

responsibilities within the area in question. According to interviewees (Da, Dc, De,

Dg, Dh) questions about specific areas are asked to these developers. Many of the

41

interviewed developers (Dc, De, Di, Dj) claimed they rather ask questions than read

documentation. These developers thought asking questions about functionality gives

good answers and works well. Also, they did not seem to mind having to answer

questions. During the interviews one of the senior developers (Db) recognized that

developers get quite a lot of questions. However, a majority of the developers that

touched on the topic (Dc, De, Df, Di, Dj) argued that answering questions is not an

issue for them. Instead, one of the developers (Df) expressed that the approach could

even be beneficial from the large perspective:

“Answering questions is not a problem, not for me at least. Of course it

takes time that could have been used for correcting bugs, but I think that

more bugs are corrected in total if you help solving each other’s prob-

lems.”

- (Df)

Many developers mentioned that they also use other sources of information than

verbal communication, when trying to find out the functionality of the software. Sev-

en of these (Da, Db, De, Df, Dg, Dh, Di) claimed they read the code to gain under-

standing of the functionality. One of these (Da) also mentioned manually checking

functionality in the software through trying it out on a product. Moreover, one devel-

oper (Df) as well as a line manager (with 2 years of experience in that role) that was

interviewed in an introductory meeting argued that, in reality, the tests developed by

QA constitute the requirements.

Several interviewees (Tb, Tc) from QA expressed that they think their test cases

can be seen as a representation of the requirements. A senior tester (Ta) agitated for

focusing on test cases instead of requirements documentation:

“I try to move us in a direction where we have some kind of test driven de-

velopment, where requirements yield a product and the tests test the prod-

uct. Then the tests become the living requirements. [Imagine] we create

product one, we have done the tests for it and some tests fail. Then you dis-

cuss in the project and you don't think the test should fail but that the prod-

uct is correct and through the discussion you, so to speak, change the re-

quirement that the test is. When you then have released the product, mean-

ing you have a functioning product and tests that pass, the tests are good

documentation for how the product should work. […] instead of discussing

a requirements document, that determines the tests, that determines the

product, and... It only becomes overhead [costs].”

- Ta

42

The senior tester continued with describing how products also can be seen as re-

quirements, further reducing the need of requirements documentation:

“I think that, on the [platform department], there are many people who

complain that you say 'This product should be as the other one' or similar.

But that is very good, to have some sort of benchmarking. All of the prod-

ucts that we have released are in some way a set of requirements. This is

much better than a long list in a document that might not even reflect the

actual product. A long list in a document that describes how someone, at

some point, thought the product should be. But we have the product right

here, we can just check how it works. It is released and people are buying it

– we can simply test it. Therefore, I am an advocate for using tests and

products as requirements and that these two should be enough, meaning no

other [requirements] documentation than tests and products should exist.”

- Ta

The methods used by QA in order to gain requirements knowledge are similar to

the methods used by the developers. Several testers (Tb, Tc) said that they communi-

cate with developers in order to gain knowledge about requirements. Furthermore,

these testers mentioned that both the PRS and the PFD are used to find the require-

ments. However, as the PRS is quite often missing (or of low quality), one tester (Tb)

claimed direct communication with developers is used for clarifying the requirements.

The same tester also thought talking to the developer of the software always gives

better answers than reading documentation. However, as the data sample from QA in

this regard was not extensive, more research is needed in order to explore how other

parts of QA work when uncovering the requirements and what they think about this

specific approach.

Direct communication with other employees was also claimed (PdMa) to be used

by product managers when they need to know how the software is working. Further-

more, the product manager claimed that simply trying the software out is used as a

method for finding the functionality in the software. Another product manager

(PdMb) summarized how requirements are found by developers when answering a

question about how they can uncover the requirements in an unfamiliar module:

“The unit tests and function tests for that particular code. It is really that,

and then they talk to the owner of that code in case the change they want to

implement destroys something. [...] It is the tests and those end user docu-

ments like PFD and CD that describes how the behavior should be.”

- PdMb

43

Overall, the direct communication with colleagues seems to be one of the most im-

portant sources for requirements knowledge. Moreover, many interviewees seemed

content with using this type of communication for conveying requirements

knowledge. However, this conclusion is restricted to the platform organization. The

interview data suggested that there are challenges in other parts of the organization,

but future research is needed in order to validate these. For this reason, they are not

presented in detail here.

5.3 Quality requirements

When asked about quality requirements, many of the interviewees (Dc, Dd, Df,

Dg, Di) intuitively related it to performance requirements. Because of this and the fact

that quality requirements were not the main topic of this study, much of the discussion

in this section is based on the context relating to performance requirements.

The orderer is the one who ultimately decides on quality requirements questions.

According to Di, the orderers are sometimes aided by people with more technical

knowledge such as the CBAs. However, putting quality requirements directly on the

platform is not trivial as the performance between products varies greatly, e.g. due to

different hardware as well as different functionality setups. One project manager

(PjMa) mentioned that orderers occasionally need to change the initial quality re-

quirements in a project, because they were not feasible.

Furthermore, one of the testers (Tb) explained that there have been issues with

pushing more functionality into the platform without upgrading the corresponding

hardware. This caused older products, with older hardware, to not be powerful enough

to support the new software. Additionally, a senior tester (Ta) from QA mentioned

that specifying quality requirements is dangerous, since the quality desired by the

customers always keeps increasing. Thus, the tester reasoned that any old specifica-

tions that define “high quality” may actually represent low quality in current terms.

The tester concluded that there is a risk that people will interpret those kinds of speci-

fications as the absolute truth, without considering that quality needs to improve con-

stantly. Therefore, the management of quality aspects, and thus quality requirements,

is complex at the company due to several different reasons.

According to the view of one product manager (PdMa), there are no processes for

dealing specifically with quality requirements, other than the quality tests. Rather than

having clear guidelines for quality requirements, this product manager found quality

aspects to be handled from case to case, based on the opinion of the related product

manager. In order to be able to do this properly, interviewees (Di, Ta) indicated that

product managers are dependent on the knowledge of others, e.g. the CBAs, in order

to be able to answer questions about quality aspects. This communication might pose

a challenge, as Ta notes:

44

“The one who ultimately decides [on quality requirements] is the orderer,

the product manager, but they can't express themselves in a way that, in re-

ality, puts them in charge. Instead, they are dependent on that people from

the technical roles [e.g. developers] can explain the difference between al-

ternative A and alternative B to them. There are often big communication

problems here, between the people who aren't interested in the technical

details and the people who only are focused on the technical details. They

find talking to each other very difficult.“

- Ta

Several developers (Df, Di) noted that there exists some confusion about quality

requirements. In some cases, the confusion is about what the required level of quality

is, while in other cases it is the reason for having certain levels of quality that is un-

clear. One developer (Df) reported on regular confusion regarding a specific quality

aspect, where a test case had failed and it was unclear to the different parties what

quality should actually be required. The developer explained that the failed test cases

only led to decisions of ignoring them. Three developers (De, Dg, Dj), a majority of

the ones who touched on the specific aspect, revealed that quality requirements usual-

ly are not specified explicitly in their projects.

5.3.1 How the evolution of quality aspects is managed

The company has started to measure performance in order to keep track of it over

time. The measurements are taken both by the projects and by QA, as they do quality

testing of the software. One senior product manager (PdMb) mentioned that this ena-

bles management of performance, as the measurements make it possible to follow the

development of performance over time. The product manager claimed that having this

kind of information for example makes it easier to see trends of degrading perfor-

mance. Thus, measuring the actual performance does work as a way of managing

quality instead of using written requirements. This means that performance aspects

are measured after implementation in order to ensure that they are adequate. Howev-

er, in order to draw any conclusions on whether this approach is appropriate in the

context of the company or not, further investigation is needed. Nonetheless, consider-

ing the complexity of managing quality requirements in an SPLE setting where many

different products use the same platform, this approach seems to be a reasonable op-

tion.

 Several developers (De, Df) saw QA as the responsible party in checking the qual-

ity aspects and making sure they do not deteriorate. This view is similar to the ones of

a tester in QA, who felt that QA in some way is made responsible for defining the

quality requirements (Tb). This seems to be due to the fact that several members from

45

QA (Tb, Tc) thought there is a confusion regarding what is correct and not when it

comes to quality aspects. As Tb noted:

“Even when we do not have any requirements we still have to test and show

the quality of the products. We have to test the quality and give the reports

to show how good it is. Others then look at it and decide if it is good. We

become a part of the requirements, for better or worse. We can't just sit and

wait to get the requirements – in that case not many test cases would have

been run. We have to, sort of, invent the requirements and test cases any-

ways to get it [the software] through.”

- Tb

Because of this, the same tester also felt restricted to measuring what the product

“can” do rather than what it “should” do, expressing a concern that not having clear

goals for quality requirements might make it hard to manage the direction they are

heading in. Another tester (Tc) gave a similar explanation, also adding that QA has

had problems knowing what quality levels that are considered sufficient. This tester

felt it becomes time consuming for people in QA to sort these kinds of questions out.

This indicates that the current approach of managing the quality aspects may be caus-

ing QA to compensate by spending time with specifying the actual quality levels in

their test cases.

5.4 Benchmarking as requirements

Several interviewees (Tb, Tc) reported on a common usage of requirements relat-

ing to older products or to the software platform itself. These requirements are usually

expressed in a comparative way, using the existing functionality and quality proper-

ties as a benchmark. In this report this concept is referred to as “benchmarking as

requirements”, which indicates that the requirement in itself is stating the desired

quality in relation to some other existing software. Two of the interviewed testers (Tb,

Tc) had many examples on this kind of requirements, e.g. “Product x should be as

Product y, but better” and “The new version of the software must not be worse than

the last version”. As another example, one of the most common requirements of this

kind is a requirement on backwards compatibility, which is put on a large part of the

company's software. Since it is an important requirement for the company, one inter-

viewee (Df) explained that when asking the question “how should it work?” to Prod-

uct Management, one of the most common answers is “it should work as before”.

Benchmarking as requirements is encountered, at least to some extent, in development

of code and test cases for new software.

The opinions of whether or not to use benchmarking as a form of requirements var-

ied between the interviewees. One tester (Tc) emphasized that such requirements are

46

hard to test due to difficulties in understanding what is included in a piece of soft-

ware, as some other software is used as comparison in the requirement. This difficul-

ty, in turn, seemed to be one of the causes for difficulties in choosing test cases for a

piece of software. These issues, relating to using benchmarking requirements, are

explored more in section 5.5.2 “Understanding which functionality is included in a

piece of software“, and section 5.5.4 “Choosing what test cases to run”, respectively.

Another challenge with using previous products and platform versions as an oracle

for test cases was presented by this tester (Tc). The tester reasoned that there needs to

be some process that guarantees that those products and platform versions are correct

in order to be able to effectively do testing, as otherwise defects in old software will

not be found in the new software either. The reason for this would be that just doing

comparison between artifacts will only verify that the artifacts are alike, not that the

new artifact that QA is testing does not have any defects. On the other hand, a senior

tester (Ta) felt that these requirements are good from the perspective of Product Man-

agement, expressing that using this kind of comparison is much easier for a product

manager than answering detailed technical questions:

“When you release [the product], then you have taken that decision. Then

the performance of that product will become some kind of benchmark. After

that it will be much easier for a product manager to say 'we are going to do

product two and it should be at least as good as the first one'. Then we have

that benchmark and we don't need documentation of what the first product

could do, we can simply measure it.”

- Ta

Note that although the tester is speaking specifically about performance aspects,

the logic can be applied to functionality and functional requirements as well. By mak-

ing the decision to release a piece of new software or a new product, the senior tester

reasoned that the quality of the product, including its software, should be seen as ade-

quate for the market. The quality in this case can also be seen as the degree to which

defects exists in the software. Thus, handling any defects that are left in subsequent

products and their software might not be critical and could potentially be handled on a

case-by-case basis.

As the effectiveness and efficiency of using benchmarking as requirements have

not been specifically studied, further work is needed in order to conclude whether this

approach is beneficial or not. However, the concept as such is interesting as it could

reduce an organization's dependency on requirements documentation and thus possi-

bly facilitate lighter processes. As no previous research was found on such a concept,

these ideas may be interesting as future research material. As the concept has the po-

47

tential to reduce the costs of creating and maintaining requirements documentation, it

could serve as a cost efficient, “good enough” way of specifying requirements.

5.5 Implications of the company’s requirements process

In this section, the consequences of using the current requirements process in the

company are presented. This includes a discussion about the following:

5.5.1 Understanding the intended behavior of a feature – presents the interview-

ees’ viewpoints on any issues related to this topic.

5.5.2 Understanding which functionality is included in a piece of software –

presents the interview results and some discussion about the significance

of the challenges in regard to this topic.

5.5.3 Complementary information about requirements – presents what is to be

regarded as complementary information, which of this information that

could be useful to the interviewees and why.

5.5.4 Choosing what test cases to run – treats the difficulties, revealed in the in-

terviews, of choosing test cases for a piece of software.

5.5.1 Understanding the intended behavior of a feature

Two interviewees (Df, Di), as well as a line manager (with 6 years of experience in

the current role) that was interviewed in an introductory meeting, reported on trouble

with knowing what the intended behavior of a feature is. One of the factors contrib-

uting to this might be the difficulty of getting an overview of the PFDs for the plat-

form. This was expressed by one developer (Di) and one tester (Tc), where the tester

specifically stated:

“The PFDs are located at the different project sites. […] It is really hard to

get an overview of all the functionality. It is a big problem. […] It is hard to

get an overview of the PFDs and from where they originate.”

- Tc

Since the PFDs are used in order to understand the software, this issue can have an

effect on the process of finding out the intended behavior of the functionality. More

specifically, not being able to get an overview could contribute to not understanding

the specific functionality, since the functionality of a certain piece of software gener-

ally is spread out between several PFDs.

A project manager and two developers (Df, Di, PjMa) also indicated that QA has

some difficulty in knowing how certain functionality is supposed to work. PjMa and

Df stated that it is not uncommon that developers get incorrect tickets. One of the

48

testers (Tc) gave a possible explanation to this, indicating that their test cases some-

times fail because the tests are inconsistent with the intended behavior. According to

the tester, one of the reasons for this is that the behavior of the software is occasional-

ly updated without notifying QA, causing test cases to be outdated.

Incorrect tickets happen even though the process for validating test cases is quite

rigorous at the company, according to one tester (Tc). The tester explained that the

company uses reviews, where employees from different departments attend (e.g. au-

thor of the PFD, other members of the project, the responsible QA resource), in order

to uncover and solve inconsistencies between the intended behavior and the test cases.

Ultimately, the inconsistencies lead to failing tests and thereby that the developers

receive incorrect tickets. Since resolving incorrect tickets takes time for developers,

this might cause inefficiency at the company. However, a senior tester (Ta) claimed

that tickets are means of communication, explaining that instead of asking the devel-

opers directly, testers can send a ticket that might be wrong. According to the logic of

the tester, it is not certain that incorrect tickets waste developers' time, since the alter-

native – of having to answer more questions from QA – could be just as time consum-

ing. Therefore, reducing the number of incorrect tickets that are created in the organi-

zation might not be the most pressing matter in the current context, especially when

considering the open culture at the company and the focus on communication.

5.5.2 Understanding which functionality is included in a piece of software

Some interviewees (PdMa, Tc) experienced a challenge in knowing the scope of

the functionality in a specific piece of software. This piece of software can either be a

specific version of the platform, a product specific piece of software, or in some cases

customer specific service releases. The product manager (PdMa) expressed difficul-

ties relating to this issue in the following way:

“This is one thing that I find pretty difficult today, to know what is actually

included in a given software or product. […] You can always go back and

see what was integrated into a certain LFP [version], but there is not one

place, like a list, where you can find it. I think this is a deficiency, since you

often need that information and to know if certain functionality was includ-

ed in [version] 5.60 or [version] 5.55.”

- PdMa

Similarly, one tester (Tc) explained that there is much confusion in this regard, es-

pecially when testing the so called benchmarking requirements (described in section

5.4 “Benchmarking as requirements”). The tester pointed to that such requirements

are vague and hard to test, as it is hard to know what is included in the software that

such requirements benchmark against:

49

”As a test engineer I would like the requirements to be verifiable and that is

not always the case. As I said [referring to requirement], '[the product]

should have all the functionality that exists on the platform'... Well – where

is that specified?”

- Tc

No issues were reported from the developers on this topic. However, this problem

might not be applicable for developers, as they tend to focus more on specific func-

tionality rather than look for information on greater portions of functionality. Also,

the interview data is somewhat inconclusive on the generality of the issue in Product

Management and QA respectively. Further work may therefore be preferred in order

to verify that these difficulties are indeed significant in QA and Product Management.

Additionally, the difficulties might be eased from the ongoing improvements, which

are elaborated more upon in section 5.8 “Ongoing improvements“. However, the con-

fusion regarding what is included in a piece of software causes additional issues. Spe-

cifically, the interview data indicates that the confusion causes difficulty when creat-

ing test suites (elaborated on in section 5.5.4 “Choosing what test cases to run”).

5.5.3 Complementary information about requirements

In some scenarios the requirements that do exist may not contain all the infor-

mation that is needed in order to be able to convey a deeper understanding of them.

This complementary information may, for example, contain details about the im-

portance of the requirement, who ordered it and what the rationale for specifying it in

the first place was. This section explores what the interviewees expressed with re-

gards to finding this kind of information.

A motivation for having this kind of information was given by a senior product

manager (PdMb), who raised concerns with letting tests completely replace the re-

quirements in the following way:

“One reason for wanting something that keeps track of the correct behavior

is that when someone tries to correct an alleged bug, you want to know

whether it really is a bug or if it was ordered to work that way. Otherwise,

there is a risk of drifting away from the initial idea through QA, where QA

in some way drive the requirements [through their test cases]. QA might

think something doesn’t work well enough for the customer, while the pro-

ject and the orderer might have an agreement that a certain feature is not

super important. […] For this reason you want some kind of documentation

claiming the purpose [of the feature], why it was done, how important it is

and what was actually agreed upon.”

- PdMb

50

Regarding the purpose of a feature, many of the interviewees (Da, Db, Dj, PdMb)

expressed that it is difficult to know why a feature exists, how important it is or why it

was chosen to behave the way it does. One of the developers (Dj) elaborated on the

difficulties in finding out why certain decisions relating to functionality has been

taken:

“This is something that we have been struggling quite much with. […] For

example, you can set one of these overlay texts where you choose the color

of the text to either be white or black. Then you can also choose the color of

the background, which can be white, semi-transparent white, black or semi-

transparent black. The thing that happens when you put black text on black

background, well you understand that... It gets black. […] This example is

maybe not that severe. It is nothing that we are depending on. But I have

experienced other cases where we have had a bigger need of knowing the

history behind the decisions.”

- Dj

One of the product managers (PdMb) mentioned another issue due the difficulty in

knowing the purpose of certain functionality, when asked if it was possible to find out

why a feature behaves in a certain way:

“Not always. It can actually be pretty hard. If there is a CD you should be

able to find it in there. But it could be that you find why it works as it does

on some level, but not why it was interesting to do to begin with and what

the reason was that you developed it. That can be pretty hard to find out.”

- PdMb

When asked if the CD did not contain a motivation the product manager replied:

“Yes. It can describe something like 'In order to support this use case it

needs to be like this', but it might not be documented from where the use

case originates. So if it [the requirement] turns out to be very expensive, er-

ror prone, difficult to maintain or hard to test and you want to remove it, it

can be hard to know if that is okay since you have no idea of what part of

the market that uses it and who actually ordered it to begin with.”

- PdMb

This indicates that the product manager thought it would be beneficial to have

some sort of complementary information together with the requirements, specifying

their stakeholders and their purpose. However, according to the product manager this

51

would probably not be viable to document this since the cost of implementing such a

solution would likely outweigh its benefits.

5.5.4 Choosing what test cases to run

Although this report does not specifically treat product development challenges,

some product specific challenges from the testing perspective are presented in this

section. The reason for elaborating specifically on these challenges in relation to test-

ing, is that test cases have been established as a fundamental aspect of how require-

ments knowledge is handled at the company. As the tests, to an extent, act as re-

quirements at the company, these challenges are important from a requirements per-

spective.

The difficulty of choosing what test cases to run for a specific piece of software

was reported on by several testers (Tb, Tc). As the company is conducting SPLE,

developing against a platform, testing is conducted in several places. For example,

tests are run when a project integrates its work to the platform, when a new platform

version is about to be released for a product group and when a new product (with a

certain functionality setup) is developed. In all of these cases, QA staff needs to make

an assessment of how many tests to run and which test cases are applicable.

Even if tests were considered as requirements in some ways, the tests are not

equivalent to requirements. One tester (Tc) was uncertain of how to ensure proper test

coverage and complained about the lack of traceability between tests and require-

ments. However, because of the incomprehensiveness in the company’s requirements

documentation, having traceability between tests and requirements might not solve all

issues. Something that could be done instead is to create traceability between tests and

products, making it easier to know what test cases to run for each product. The tester

(Tc) recognized that a mapping between requirements and products essentially would

mean the same work as doing a mapping between tests and products. As the compa-

ny's requirements documentation would need significant work in order to become

comprehensive, the viability of the second option could be worth evaluating.

The same tester showed general reluctance to using tests as requirements, express-

ing the following concerns:

“As long as you save input from other test rounds it could work. But it easi-

ly gets very messy when [the development of] a product is divided between

different projects, when it is an umbrella project and test rounds are split

up. It is hard to know... Okay, we should run all test cases that are applica-

ble on this product, but where do I start? […] The problem is that it is very

product specific.”

- Tc

52

In essence, the tester was pointing to difficulties in finding what functionality is

supported in each product (similar to section 5.5.2 “Understanding which functionali-

ty is included in a piece of software”), as well as a difficulty in finding old test data.

Old test data are specifically used when making test runs for new LFP versions and

can thus help a tester in choosing the relevant tests. This gets critical when having

requirements that use the benchmarking concept, as the tester in many cases is de-

pendent on the old test data in order to know what tests to run for any new software.

To summarize, knowing what test cases should be run is made more challenging

through low traceability between tests and requirements/products, difficulty in know-

ing what functionality that is supported in a piece of software and relatively low ac-

cess to old test data. As the tester (Tc) puts it:

“Often, very many tests are not applicable since you cannot tell that they

are not applicable when you choose [what test cases to run for a product].

You rather choose too many [test cases] than too few. This means quite

much time is spent later by the tester trying to sort out issues like 'This

doesn't seem to work', when in fact the test case is not applicable.”

- Tc

Thus, the interview with Tc indicates that testing is made significantly more cum-

bersome through the absence of rigorous requirements documentation. However, the

ongoing improvements (see section 5.8) that are currently in progress at the company

might at the same time offset the challenges. Specifically, the definition of features

that are being collected in a comprehensive feature list could have a big impact on the

testing processes. Therefore, future evaluation of the effects of these improvements in

a testing context would be useful to complement the findings in this study.

5.6 A remark on the general quality of the software

Although the above sections have treated a number of challenges, the general per-

formance of the organization as a whole seems to be satisfactory from several differ-

ent parties' point of view. For example, one developer in Product Maintenance and

one tester (Dc, Tb) noted that the quality of the software at release is good, in some

cases compared to other companies where the interviewees had worked previously.

Especially, the developer (Dc) working in Product Maintenance, the department re-

sponsible for development specifically aimed at customer issues, expressed that the

customers in general are happy with the quality of the products. These statements,

together with the fact that the company is the market leader in its area, points to that

the general quality of the software that is being released by the company is relatively

good.

53

5.7 The scalability of the requirements process

The majority of the interviewees that had an opinion on scalability (Db, De, Dh,

PdMa) were not concerned of scalability with regards to the requirements. A few

interviewees (Di, Tc) recognized scalability as an issue in certain contexts. Still, none

of these targeted the process in general. Instead, Tc was worried that the use of

benchmarking as requirements would not be sustainable, whilst Di expressed scalabil-

ity concerns in his/her own team where documentation had been neglected due to

other priorities.

More specifically, one of the developers (Dj) did not think more documentation

would make the process more scalable. Also, a product manager (PdMa) related scal-

able processes to being simple and light (including documentation):

”The risk is always that you paint yourself into a corner somehow, general-

ly with regards to too much documentation. There could maybe be a risk

that you get to a point where it is all about a documentation process, that

the process is important, rather than developing good functionality. That

feels wrong to me, I would rather have it the other way. That risk is proba-

bly always there, but I don't see any short term tendencies for it although it

is absolutely something to keep track of. This was something we saw a bit of

in the [old version of] CD, which I mentioned, that we wanted to have eve-

rything there. […] It became very cumbersome already from the start, and

we abandoned that idea. I think you need to avoid these kinds of things to

keep the scalability. […] If you get this monolithic document, then the

scalability goes really bad. […] It is always a challenge, like 'okay, how do

we split it up', it is difficult.”

- PdMa

At the same time, the product manager recognized that it is hard to have a single

process that suits many teams, as different teams tend to work in somewhat different

ways. The product manager reasoned that because of that, there is a risk that all ele-

ments in a large process will not be needed for all teams.

On the other hand, one developer (Dg) pointed out that the process is subject to

constant change, not least when considering the pace at which the company is grow-

ing. The developer explained the development of the company's process with regards

to scalability:

”This work [with more structure and documentation] is something that has

been started now and is in progress now, because we are growing. The

PADs and so on have been added because we have grown. It worked with-

out PADs before when the company had 100 persons or something, but a

54

couple of years ago we suddenly became 600 and then it started getting

harder. Then these documents were added, as a result of that things got

more complex. […] The process is adjusted to the company.”

- Dg

Finally, a senior tester (Ta) expressed a viewpoint against large processes and em-

phasized that the people in the organization ideally should take a large part of the

overall responsibility:

”When you get more and more overview, you lose more and more under-

standing of the details. You have to try explaining to people on a high level.

After that, people have to decide for themselves. I do not think that it neces-

sarily is good that there is one person in the top of the building, deciding

what is good and bad, right and wrong. It becomes an extreme bottle neck.

You can see it a bit like Wikipedia. There are no editors. There are some

rules about what is good and bad, and there are people who look around

and point out that 'this page is not well written' and things like that. But for

the most part, this is distributed to the masses – people go in and edit, write

and decide for themselves what is right and wrong. That scales so much

better than large processes and reviews – if you were to have reviews on all

Wikipedia articles before they were published then nobody would bother

with that.”

- Ta

According to a senior product manager (PdMb), scalability becomes an issue when

more people have to work on many components as the platform is growing. However,

the company is currently modularizing the platform in order to take care of challenges

related to scalability. Following a question on the amount of questions the developers

have to answer the same product manager mentioned:

“I don't know if they [the developers] really have to ask that much. I hope

people talk all the time in their teams, but hopefully they don't need to talk

that much between the teams. That is what we are working on heavily right

now and for the future. That we should modularize more and have clean

APIs between things so the communication channels within the platform

are clear and as few as possible. Because, as soon as you need to talk to

someone in another functional area it means you have to use their code in

some way, which you should be able to do, but you should do it as seldom

as possible. Each such thing creates a dependency within the platform.”

- PdMb

55

The statement shows that the company applies architectural measures to reduce the

amount of questions that are asked between members of different function teams.

These questions can for example be about requirements and functionality in different

functional areas. The reduction of the number of questions could mean that each func-

tion team becomes more independent, giving them the ability to focus on their own

area without having to look into other areas. The teams may use APIs created by oth-

ers, but should preferably not have to touch their code. According to another product

manager (PdMa), the architectural efforts in this regard will also reduce the need for

close communication between the product managers, which currently is needed due to

challenges with managing quality requirements.

Moreover, by splitting up the platform into smaller and independent modules, re-

quirements and the functionality will be split up into smaller portions. This means that

each function team has responsibility of a small piece of code together with its corre-

sponding requirements and functionality. The authors’ interpreration is that this will

make it easier for the team members to keep track of the requirements, reducing the

need for documentation. Also, it will increase the degree of specialization within each

team, making the team members more knowledgeable, e.g. about requirements and

functionality, in their certain area.

However, if the functional areas grow, so will the teams and more people will have

to work on the same code. A bigger team would mean that a bigger piece of code

constitutes the functional area. The authors’ interpretation in this case is that a larger

team will make it harder for team members to keep track of the requirements and

functionality, simply because the code base (and thus the amount of requirements) is

larger. This results in an increase in the amount of questions that needs to be asked

about requirement related topics. Following a question about how the company man-

aged organizational growth a senior product manager (PdMb) replied:

“If we have a function team on the verge of being split up where the prob-

lem is that the code built in a way that makes it difficult to split up […], we

put it as a task in the roadmap. Just because the teams have to be able to

grow. A team cannot grow indefinitely. If it grows to be more than 6-10

members, depending on the complexity of the area, it will become hard to

communicate and keep track of what other team members are doing [...].

Then you have to split up the team and in order to make it worthwhile you

also have to split up the code.”

- PdMb

Based on the above elaborations on the topic, the interviewees did not regard the

requirements process as such to cause scalability issues. The general concerns were

rather, as one interviewee (PdMa) suggested, that the process and documentation must

56

not be allowed to grow too much and become cumbersome. Essentially the interview-

ee expressed a desire to keep the process as lightweight as possible in order to miti-

gate any scalability risks. Also, the company appears to be paying attention to risks

associated to scalability and is continuously evolving its processes in order to make

them more scalable, e.g. through architectural means such as modularization.

5.8 Ongoing improvements

The company has several parallel ongoing improvements in progress aiming to im-

prove their processes, some of which also affect the requirements processes. The dif-

ferent improvements are discussed with regards to what benefits the initiatives might

yield from a requirements perspective. Based on the content presented further down in

this section, many of the improvements that are elaborated on seem to relate to, or

even originate from, the QA department. This might point to that testing has signifi-

cant impact on the requirements process within the company. It might also relate to

that QA seemingly experience the most significant issues with the current require-

ments process (see section 5.5 “Implications of the company’s requirements pro-

cess”). Of the improvements found, the most important ones are explained in detail

further down in this section, but summarized here:

 Implementation of automated tests that will shorten the developers' time

to feedback on their code.

 Auto-generation of feature lists that specifies the software functionality in

the platform and in the products.

Promoting automated tests, a senior tester (Ta) reported on long feedback cycles

for developers as well as finding faults too late. This has caused the company to push

testing “upwards” through the development process. From the developers' perspec-

tive, testing in QA has taken relatively long time. As the tester put it:

“If we see it from a time perspective, the typical scenario has been that you

have an idea about what you want to do and do a requirements specifica-

tion or something. And then the developers start, and they do an alpha or

something. Finally they do a beta, a considerable amount of time later and

now we start testing, roughly. Here the quality is really bad and at this

point we start finding faults. This process might have taken weeks. It be-

comes very problematic for this project to not find the faults earlier. Some

faults might come from other projects, finished earlier, not caused by the

current project. [...] So, when this project finds a defect, it can be due to

something that someone else did several months ago. Then it gets very diffi-

57

cult to get ahold of the person who worked with this thing and now he

doesn't remember anything. That the feedback loops become so long is a

problem. What we have tried to do is partly to push the testing upwards, so

that you discover as much as possible as early as possible.”

- Ta

As the tester recognized, long feedback loops are an issue – the developers need to

know if their work satisfies the requirements. When the requirements cannot be found

explicitly, tests are one way of giving the developers this feedback. This is also rec-

ognized by a developer (Dg), expressing a wish for automatic testing of the require-

ments in order to get earlier feedback. Thus, minimizing the time between develop-

ment and testing is important from several aspects.

One fact that influences the interaction between development and QA testing, is

that test cases run in QA traditionally have been focusing on system testing from a

black-box perspective. A senior tester (Ta) explained that these kinds of tests only are

a nuisance to developers, as they only let the developers know “that they are not fin-

ished yet”. The tester reasoned that it is difficult for a developer to have to wait sever-

al weeks just to get feedback on the code.

Furthermore, the tester elaborated on ongoing work in tackling this through auto-

mated tests, which could shorten the feedback loops:

“What I have been working a lot with is making [automated] test cases that

the developers can run themselves, on their desktops, and not having to

wait on building a firmware to QA where someone has to test it. Instead,

the developers should be able to test their work themselves in order to get

these shorter feedback loops. […] What is problematic with the current way

of working is that if we have a lot of manual testing then that does not scale

very well. It becomes very expensive to add an extra test run. The ad-

vantage of automated tests is that they only are expensive to create, while

they are very cheap to execute. It is the other way around with manual

tests, they are cheap to produce […], but very expensive to execute.”

- Ta

Except the automated tests, QA is also one of the key parties in developing a more

precise definition of the features that exist in the firmware platform. The idea is to

specify all the features that currently exist and then maintain this comprehensive list

of features. The tester (Ta) explained that a feature will likely be defined by a few use

cases and corresponding test cases. Extending this to the current products, the idea is

to enable extraction of product functionality through the product itself. Essentially,

this means that it will be possible to understand which of the features that each prod-

58

uct has directly through the product. It is interesting to note that this is in line with the

previous reasoning that a finished product should be a significant part of its own set of

requirements. There are several benefits of defining features extractable through the

product:

 It will be easier to keep track of the differences between products, as the ex-

tracted feature lists can be easily compared between different products. Im-

plementing traceability between the features and the available test cases

would also enable testers to find the test cases they need to run in a much

more straight-forward fashion. This will at least partially solve the issue of

choosing test cases. The defined features would also make benchmarking as

requirements more viable, as a senior tester (Ta) notes:

“We have a lot of products that have been released to the market. It

doesn't matter what features they should have had, they have the ones

they have. We have done scripts that enable generation of XML files

that lists what features they [the products] have. Then, the orderer

can say 'Well, I want a new product that is roughly like this one, but

we also want this thing'. Again, you can use benchmarking towards

that product [...] and see what features it has. The idea is that this fea-

ture list should be a kind of requirements document that you can start

with.”

- Ta

 It will be easier to inform users and stakeholders of the supported use of the

company's products. Through the use cases defining the different features,

intended use of the products can be specified. Then, as the tester (Ta) and

one product manager (PdMa) noted, these use cases can be used as infor-

mation and possibly as a way of justifying changes affecting unintended use

(as the unintended use is not supported):

“I would like a couple of use cases to be defined, [specifying] how we

think a feature should be used. Often [stakeholders] that come to you

have done something outside [the intended use] and it is very hard to

answer [those questions]. […] The important thing is that we docu-

ment the cases that we have intended, because that is also something

that we can use outside our organization – saying 'This is how we

think that you will use this functionality. If you go outside of this in

some special case, you are kind of on your own'.”

- PdMa

59

“In the future we hope that there are clear use cases. What will hap-

pen is that you will add a feature to the feature list […]. Then there

will be a test, testing this particular use case making it kind of test

driven. This test will define what the feature can do. It might be that

you can do something else with this feature as well, but this will not be

officially supported [by the company] and then we can break that lat-

er. We just have to warn everyone that 'this is how the feature should

be used'. For all the old things this does not exist. For all the old

things there is just a heap of stuff that can be done and the combina-

tion of what our customers can do is very, very large.”

- Ta

 If the different versions of the feature lists correspond to the different ver-

sions of the LFP, it would be possible to get an overview of what functionali-

ty is contained in each LFP. The feature lists would thereby, at some level,

give a partial solution to the difficulties in knowing what functionality is in-

cluded in a specific LFP version.

However, one tester (Tc) notes a risk with using these kinds of automatically gen-

erated feature lists on products:

“[Following a discussion about the automatically generated feature lists]:

For this to work there needs to be a process so that someone checks if it

[the product's configuration] is correct. If we use the software in the cam-

era as oracle we will not be able to discover faults that have slipped

through [in the configuration].”

- Tester (Tc)

Although this risk is significant, the impression of the authors is that it might be

mitigated if proper measures are taken. If released products are considered good

enough to sell to the market, they should be good enough to use in benchmarking

through their feature lists. Any bugs in the old product that need to be fixed in a new

product can be brought up and taken into account explicitly if they need to. Thus,

using released products as a benchmark from which the feature lists are compared

does not seem to be tied to any larger challenges. On the other hand, if a new prod-

uct’s feature list is used in order to choose test cases, then the risk presented by the

tester is a reality. In order to avoid this, the feature list in the new product must some-

how be verified. One way of verifying this is to actually compare it with a product in

a benchmark, making any differences between the products explicit and then investi-

gate if these differences are the intended ones. Another way is to have someone with

60

extensive knowledge of the customer requirements verify the correctness of the new

product's feature list directly.

Anyhow, even though it might be positive from many points of view, the feature

list means one more step in the testing process where things can go wrong. Therefore,

the process relating to the use of the feature list needs to be intentionally designed to

mitigate these risks.

The company is also making an effort to collect data from test runs for future ref-

erence. This will to some extent facilitate the use of requirements in benchmarking

form, as the history of test runs can be used as information on what tests should be

run. However, one tester (Tc) still questioned the viability of this approach, as test

scopes in many cases are split up between different products in order to reduce the

time and cost of testing. As this means that any historical test scope will not reflect

the full test scope, more rigorous collection of test data might not solve the underlying

difficulties in choosing what test cases to run.

The improvements presented here will naturally have some effect on the benefits

and challenges presented elsewhere in this study. However, due to uncertainties in the

details of how the improvements will be implemented, this report will not extensively

discuss the implications of these improvements.

5.9 Communication channels

This section treats face-to-face communication and documentation as communica-

tion channels, including how and when the communication forms are used and what

the employees think of them. Especially, the purpose of documentation as a form of

communication and as a facilitator for communication is considered. Note that all

references to “documentation” in this section refer to requirements related documen-

tation.

5.9.1 Face-to-face communication

The general viewpoint among the interviewees (Dc, De, Dg, Di, Ta, Tb) leaned

towards a will to minimize the requirements documentation and instead focus on face-

to-face communication. For example, several interviewees (Dc, Di, Tb) as well as a

line manager (with 6 years of experience in the current role) that was interviewed in

an introductory meeting stated that asking questions is easier and more effective than

reading documentation. Some interviewees (De, PjMa) also pointed out that face-to-

face communication leads to positive side-effects such as networking and knowledge

spreading. Three developers (Dc, De, Di) preferred to ask questions rather than to

read documents, when they needed to get an understanding of the software.

Face-to-face communication has been shown to be more efficient than documenta-

tion in certain contexts and is especially advocated in agile software development. At

61

the same time, research has shown, see section 2.2.4 “Traditional Requirements Engi-

neering”, that face-to-face communication may not always be the best alternative. For

example, if someone gets interrupted in their work by a question, the interruption will

likely make the person lose focus and thus productivity is lost. However, not many

downsides with face-to-face communication were brought up by the interviewees.

One of the downsides was expressed by a tester (Tc), who pointed out that even

though face-to-face communication works well for one particular question, the answer

is not saved anywhere. Therefore, another person who needs to know the same thing

has to ask the same question. An increase in the number of questions on a particular

area was also the reason that one team has started to build their own knowledge base,

which they refer others to. To summarize, even though there is no general indication

(with an exception in one team, see section 5.9.2 below) of that people tend to ask the

same questions repeatedly, the problem does still exist in some cases. At the same

time, the fact that one team handled an increase in questions asked to them through

building a knowledge base shows capability of adapting to new conditions on team

level. Also, it indicates a certain amount of self-organization within the teams.

5.9.2 Documentation

One senior product manager (PdMb) and one senior tester (Ta) indicated that one

of the main purposes of documentation is to synchronize different parties, e.g. the

different members in a team or a project and its stakeholders. The tester referred to

this concept as “handshaking”. The “handshake”, even if not set in stone, serves as a

common viewpoint of what a project should do. The product manager (PdMb) ex-

pressed his/her view on documentation relating to requirements in the following way:

“My take on [written] requirements is really that you never will be able to

write a requirements list, which someone can take over and simply execute.

Additionally, you will not be able to make the software execute correctly if

you do not do any requirements either and just let them [the project] go.

The communication is very important. […] One thing that you need is a

way to make people talk to each other, whether that is through a document

or regularly forcing them into a room – different organizations can solve

that in their own way. You need to get them [the project and its orderer] to

communicate at the right times. […]. We have chosen to communicate

around the CD and PFD level, because that is where we found that the in-

terface between our orderers and our project members was. In other organ-

izations you may have more market oriented people participating in the

projects and the orderer might be even more strategic, then maybe the

communication with the orderer is taken care of by the market oriented

people in the project. What level you want to have there is different between

organizations.”

62

- PdMb

The view was elaborated on by a senior tester (Ta), who presented a more radical

view on documentation:

“As I see it, we have this flora of documentation. I think that all of those

documents are very good in order to get people roughly synchronized. A

test plan, for example, is very good because it is a kind of statement from

the tester: 'Now I have read the requirements, now I understand what this

project is about. This is my understanding'. Then people can read the test

plan and say: 'Yes, that sounds reasonable' or they can say 'Oh, you seem

to have misunderstood that completely'. It is sort of a handshake document.

After that, I really think such documents are completely useless, but people

want to go back to them and maintain them and... No, it will only get cum-

bersome to maintain – it is a handshake. After people have synchronized,

they do the work through some kind of internal communication. If the pro-

ject takes much longer than expected or if it changes very much, then may-

be you do a second version of the document as a new handshake. Then you

can have a meeting where you review that again. But, I see this kind of

documentation as one, temporary, communication tool and not as the abso-

lute truth which you should follow blindly.”

- Ta

Some interviewees (Da, Db, Dh, PjMa) claimed certain documents are not used, to

a great extent, after their creation. This further substantiates the view of documenta-

tion as a facilitator of discussion and as a handshake. As an example, the SWO was

found to relate much to the concept of handshaking. On this topic, a senior developer

(Db) stated the following:

“It [the SWO] is useful since you review it and think things through [early

in the project]. But then when it is saved somewhere, I don't think that is

very meaningful. Instead, its use is really that you have something to focus

on during discussions.”

- Db

No data pointed to differing viewpoints or other problems that indicate a lack of

handshaking activities in the projects. Rather, one senior product manager (PdMb)

expressed that the result of the software projects generally is satisfactory. This points

to that the company’s requirements process is adequate in its current form, with re-

gards to handshaking and further communication of requirements.

63

Documentation was also found to have another purpose, namely as a way to store

information over time, i.e. reference documentation. Relating to this purpose, some

issues were discovered. However, the issues were much concentrated to one team

where the documentation was especially lacking. In this team, it seemed that the

number of similar questions were too many to be considered as optimal. A project

manager (PjMa) gave the following answer when asked if it is a problem that people

ask questions:

“No, I don't think so. It doesn't disturb me very much, but I think that the

developers sometimes get a bit disturbed. It takes up a lot of their time.

Q: Are there any questions that you feel the need to document?

Yea... 'How does [specific component] work?', for example. A lot of these

kinds of questions, actually, that we in [function team] feel we need to doc-

ument in some way to get rid of all these questions. […] Some things might

not even be related to [functional area], but it is rather things like you real-

ly should get in your introduction as a developer.”

- PjMa

A developer (Di) from the same team had a similar viewpoint, expressing how the

lack of documentation has caused introductions of new employees to take more time:

”It is hard for new employees and people outside [function team] to grasp

how the component works. […] It takes time from us [to answer questions],

also from within the team. I mean, everyone is new at some point and I

think it has taken a long time to get into the work, partly because of this.”

- Di

Additionally, one issue was reported from QA, where a tester (Tc) pointed out that

occasionally there are no PFDs to be found for some functionality. The tester ex-

plained the consequences of missing PFDs in the following way:

“In the worst case we miss that new functionality has been included. This

has happened. That we in a late stage of testing discover that 'This slider

has not been here in any other product'. Then you have to look if there are

any test cases for the functionality. If not, someone has missed it. It is either

the project you are part of or it is another project where the functionality

has been included and you have missed to write test cases for it. This means

the functionality is completely untested by us.”

- Tc

64

Both the above examples of issues relate to a lack of documentation compared to

the level of documentation that the processes at the company actually demand. Thus,

it seems that a minimal amount of reference documentation is important. In these

cases, lack of documentation has led to a cumbersome amount of questions for the

developers and the risk of missing functionality in QA. This means that even if six

interviewees (Dc, De, Dg, Di, Ta, Tb) leaned towards a will to minimize the amount

of documentation and instead emphasized face-to-face communication, documenta-

tion at some level seems warranted. At the same time, no developers outside the team

in the above example experienced a lack of documentation as a significant problem.

This indicates that ensuring the creation of the documentation that is required by the

development process could be a reasonable starting point for all teams. This was fur-

ther elaborated on by a senior product manager (PdMb), who implied that the process

is adequate but that people do not follow it in all cases:

“I think that we have gotten everything down, process wise, on an okay lev-

el, but I don't think that we really get to that level in reality, yet. Therefore

there are things to do, but we do not need to decide on more things to doc-

ument. […] People forget to change [reference documentation] when they

change some behavior and so on. It could be that no tests are written even

though functionality is added and, in the next round, that functionality

breaks without anyone noticing since there were no tests on it.”

- PdMb

Thus, documentation in the company has been found to have two primary purpos-

es. Firstly, it acts as reference for storing current knowledge for future use, e.g. as

common ground when solving conflicts. The issue of similar questions being asked

frequently, presented in the previous section, is another reason why an organization

may want to have a certain amount of documentation. Secondly, documentation acts

as a facilitator for discussion and as a way of aligning different viewpoints in projects.

5.10 Soft factors

In this section, human and cultural aspects are brought up and analyzed. Specifical-

ly, the introduction of new employees into technical roles such as testing and devel-

opment is treated, as well as how knowledge of software is shared and what under-

standing the big picture means at the company. Through these sections, the compa-

ny’s requirements process is viewed from a new perspective, centered on the people

in the organization.

5.10.1 New employees

65

The company's process of introducing new employees is based on mentoring (De,

Dh). This means that the newly employed are assigned to mentors who guide them

and answer questions when uncertainties arise. Also, the new employees are given

simpler tasks in order to gain an understanding for their specific role and area. For

developers, this means starting off by doing maintenance work (Dd), through which

they can gradually increase their understanding of the code blocks in their functional

area.

As previously mentioned (see the second quote in section 5.2 “The use of available

sources for requirements knowledge”), some difficulties arise for newly employed

during maintenance work due to the lack of a requirements database. However, ac-

cording to the quote, this is solved through direct communication instead. One of the

testers (Tc) raised the following concern with replacing the requirements with com-

munication when claiming:

“As a [role] I try to forward [the new employee] through the existing in-

formation channels. A lot of [the process] involves talking to people and of

course it takes some time before you know whom to ask. So much of the

communication goes through us [role], meaning it takes time for me.”

- Tc

The statement indicates that it is difficult for new employees to know whom to talk

to. Thus, a lot of the questions are directed toward more experienced people that can

forward the newly employed to people that might hold the answers. This takes time

from the experienced employees, causing them to be less efficient in their work. Ac-

cording to previous research (see section 2.2.3 “The challenges of Agile Require-

ments Engineering”), new employees ask questions because of the lack of documenta-

tion. Thus, a more rigorous requirements approach could potentially facilitate the

introduction of new employees, as it could alleviate some of the dependence on the

more experienced employees. However, it does not seem like newly employed strug-

gle to any greater extent because of the absence of rigorous requirements documenta-

tion. Instead, the three most recently employed developers (each with an experience

of less than 2 years at the company) that were interviewed (Dd, Dh, Dj), claimed it is

rather the process steps (e.g. integration of code), tools or architectural documentation

that create difficulties for new employees. Therefore, difficulties for new employees

in understanding the requirements for the software should perhaps not be the primary

focus for the company when trying to improve the introduction of new employees.

5.10.2 Knowledge sharing

As mentioned in section 5.2 “The use of available sources for requirements

knowledge”, the company allocates responsibility, and thereby knowledge, between a

66

number of different roles. In essence, this means that QA and Product Management

are responsible for having an overview of the functionality in the software, whilst the

developers are responsible for keeping track of how their code functions on a more

detailed level. This also includes requirements knowledge, which in many cases is

held by the employees rather than written down in documents. Thus, the company

puts a large part of the responsibility of keeping and sharing requirements knowledge

directly on its employees. In this context, individuals with extensive knowledge are

more important. Three developers (Da, Dg, Dh) indicated that the CBAs are included

in this group of individuals, since they have overall responsibility and knowledge of

the functional areas. Therefore, the CBAs are seen as important coordinators and

information sources.

Two of these developers (Da, Dg) identified risks in that a lot of the requirements

knowledge at the company is individual, especially when specific knowledge is only

held by single employees. According to one of the developers (Da) there is a risk that

if a CBA quits, knowledge could be lost on previous decisions and why the code

functions (and if it should function) the way it does. Thus, it seems like a lot of

knowledge, e.g. about requirements, is individual and undocumented. This increases

the dependence on individuals and is probably one of the reasons that explain the high

amount of questions asked at the company. The other developer (Dg) claimed that

loss of experienced CBMs is undesirable, since code areas have to be delegated to

other developers that might lack detailed knowledge of them. In these cases, it is not

certain that the new responsible CBM can answer questions about his/her code and its

functionality.

However, a few interviewees (De, Df) did not see the dependence on individuals as

a major risk for the company, since there are always other sources that can be used in

order to uncover the requirements. One of the developers (De) gave the following

explanation to why unwritten requirements are not a problem for the company:

“Q: But what if someone leaves? Will unwritten requirements not be a

problem then?

No, I don't think so. In that case, you have to go to the code and see how it

is implemented. If there are no apparent bugs, defects, then you can start

questioning the functionality. How should it work? Then you go talk to

Product Management who probably ordered it from the beginning, talk to

the System Architect to see what [he/she] thinks about how it should work.

Bring it up with stakeholders really, the ones who are affected, and try to

sort it out – what is a sensible behavior in this situation?”

- De

67

One factor that facilitates the use of this approach is that the personnel turnover at

the company in general is low, as explained in section 5.1. The authors’ interpretation

is that this means that individual requirements knowledge is kept at the company to a

greater extent than companies with a higher turnover. Moreover, the company does

not only have CBAs and CBMs for the different functional areas, but also backup

CBAs and backup CBMs, thus spreading the responsibility and reducing the depend-

ency on single individuals.

Another way the company reduces the dependency on individuals is through the

function teams. Several developers and one project manager (De, Dg, PjMa) claimed

the introduction of function teams has facilitated knowledge sharing. This includes

requirements knowledge that is spread within the team during the break down of more

detailed requirements, an activity performed together with the orderer. An example of

this is that one of the developers (Dc) argued that if a CBM is unavailable, questions

can be asked to the backup CBM or other members of the team. Therefore, it seems

like the company limits the dependence on individuals and mitigates the risk associat-

ed to the loss of experienced employees.

Additionally, the dedication of QA resources to projects seem to contribute to bet-

ter knowledge sharing and communication between the development teams and QA.

This was substantiated by several of the developers (De, Di), claiming that QA mem-

bers' participation in team activities makes QA more aware of what to test and how

the software is supposed to behave i.e. requirements knowledge. For example, this

means that differences in opinions regarding how the software should work can be

sorted out earlier. Also, according to two developers and one project manager (De,

Dg, PjMa) this participation leads to positive side effects such as increased under-

standing of the other department's work, both for QA and for the developers of the

platform.

Several testers (Tb, Tc) shared the view that dedicating QA members to the devel-

opment teams has improved the communication between QA and development. One

of these testers (Tb) explained that the improved communication has resulted in better

test cases, without introducing additional documentation. Also, the fact that the QA

members review the teams' output and the teams review the QA members' test cases

means inconsistencies and misinterpretations can be found earlier, thus potentially

reducing the amount of rework.

5.10.3 Understanding the big picture

It seems that the company puts emphasis on software engineers' understanding of

the wider perspective of the company's activities, e.g. business model, other depart-

ments etc. This emphasis is substantiated by a senior tester (Ta), who explained the

68

importance of understanding the big picture, as well as how the company promotes

employees who manage to do it:

”If I go in and say 'This is how you must do it!', then they will probably lis-

ten to that. The next time they are going to do something, they will wait for

me to tell them how – and then we're there again. It is really important that

everyone understands this context of why something is done and so on.

Therefore, it might be good that the requirements are quite bad, so that the

developers and testers are forced to understand what Product Management

is after.

There is one thing that is very good at Axis and a reason for why this [re-

quirements process] has been working at all. That thing is the career lad-

der for engineers and how the assessment is made of whether an engineer

can go from Engineer, to Experienced, to Senior, to Expert. The assessment

is only based to less than 50 % on the technical competency, the rest is

about what understanding you have for Axis’ business model, for other

parts of the organization, how good you are at communicating, etc. etc.”

- Ta

The senior tester went on to explain how this impacts the cooperation between en-

gineers and Product Management, giving an explanation of how the wider under-

standing actually comes to use in the organization:

“If everyone understands those things, then it becomes much easier for

Product Management to explain what they want to the engineers. In that

case, engineers can anticipate what the requirements will be: 'I know that

[he/she] wants it to be like this' or 'The product manager have not men-

tioned this, maybe [he/she] forgot it, but I know that this will be a problem

for our customers'. Again, this is a part of Axis culture where you want

people to Act as One and so on. That is what has made it possible for us to

make such good products even though we have quite bad requirements.”

- Ta

This indicates that one important factor that allows the company to use the current

requirements process is the company's culture. Specifically, the requirements process

seems to be facilitated by the concept of rewarding engineers who have an under-

standing of the bigger picture. One of the product managers (PdMa) also indicated

that this understanding is desired:

“I have to watch out. I do not want to tell the members of a development

team exactly what to do. I want them to think for themselves and see the

69

customer's perspective. A large part of my job in this case is to facilitate a

discussion where a number of engineers from a project are gathered to-

gether with the supposed users, and to get them to talk to each other.”

- PdMa

However, even with the emphasis on having a broad understanding of the company

and its customers, everything is not clear to all developers. One example is the pur-

pose of the documentation that is written during the projects. A senior product man-

ager (PdMb) expressed the following:

“Many of the documents have uses that perhaps not everyone in the pro-

jects is completely aware of. This causes the rationale that 'We don't have

to write this, we don't need it'. Then someone else comes and says [for ex-

ample] 'We need to create the manual now, where is this document?', to

which the answer from the team is 'Eh... What?' […] The test cases also

need to be based on something, for example.”

- PdMb

Thus, the product manager indicated that in the cases where documents are used

outside the development teams, the uses of those documents are not always clear to

the developers. This view is somewhat substantiated by three developers (Da, Df,

Dg), who were uncertain about the use of the PFD outside of development. For exam-

ple, one developer (Da) said that nobody seems to know the use of the PFD or how it

should be written. Three developers (Da, De, Df) expressed concerns with the PFD.

Furthermore some developers (Da, Dd) thought the purpose of the PFD is unclear.

However, as previously written, interviews with several testers (Tb, Tc) pointed to

that the PFD is used in testing. Whether the developers’ concerns are due to a lack of

understanding or due to that the document itself is lacking in some way needs to be

further evaluated.

Furthermore, one interview indicated that the process around the PFDs is some-

times not understood correctly. Specifically, one tester (Tc) thought it was not ideal

that the PFDs are not maintained after the end of the project they were created in.

However, according to other sources (including the company's process description as

well as other interviews (Da, Db, Di), the PFDs are in fact maintained, as they are

reference documentation. In this case, the tester (Tc) only used the PFDs at the project

sites, which are not maintained after project closure, and not the ones located in Git.

This could mean that outdated documentation sometimes is used when writing test

cases due to confusion regarding the PFDs. However, as this was only an example

from one person, it is hard to make any general conclusions. Therefore, it might be a

good course of action to investigate the purpose and usage of the PFD, in order to

70

establish the intended way of writing and using it. This information could afterwards

be conveyed to the employees at the company.

Lastly, a senior tester (Ta) suggested that not everyone thrives in the company's

culture, which emphasizes face-to-face communication and the existence of unclear

requirements emerging from the company’s requirements process. The following

fragments from an interview with the senior tester show some of these soft issues:

”Some people think it's uncomfortable to talk a lot with others, they would

have felt much better to just get instructions of exactly what they should do.

But I believe a lot in this agile principle, that you should have a living

communication. So the tester should go talk to the orderer and ask what

[he/she] really wants and talk to the developers why it is like that. Then the

test gets created through a communication of both written requirements,

prototypes from the developers and dialogue with the developers. […]

Many on Axis think that they work according to a waterfall model, but in

reality it is very iterative. Many think it is very unpleasant – they get mad at

the orderer for changing [his/her] opinion and so on. So, the real problem

is really people's attitude. If people had an attitude that agile is good, then

suddenly we work a lot more agile than people think. […]

“It's funny, because we have the culture on Axis. They talk a lot about the

culture here, that you should be open and talk […]. The company encour-

ages communication a lot. A lot of activities are organized to try to create

that culture. But when we look at how we work in development, I think that

we sometimes forget that and would rather just talk to each other via doc-

uments and text.”

- Ta

These statements indicate that even though the culture may facilitate the compa-

ny’s requirements process, there are still some cultural challenges. Therefore, the

company could reap benefits through further establishing the company's culture

among its employees. As the processes and the culture affects each other directly,

taking cultural aspects into account when changing the processes at the company is

important.

 Discussion 6

This section consists of three main parts. Firstly, the research questions for this

study are elaborated on. Secondly, the limitations of the study are explained. Lastly,

71

the section includes a discussion about future work that can be performed in the light

of this thesis.

6.1 Research questions

The section summarizes the main findings, condensed into the six research ques-

tions initially formulated. The research questions are answered both through these

main findings, but also with a more general discussion.

6.1.1 RQ1: What constitutes the requirements process used at Axis Communica-

tions AB?

Through the detailed descriptions in section 0 “An elaboration on the company’s

requirements process”, this research question has been answered implicitly already.

However, here follows a concise description of the most characterizing elements of

the company’s requirements processs. The elements are summarized in Figure 3.

 Figure 3. The main characteristics of the company’s requirements process.

Firstly, the requirements are not always documented in a rigorous manner. Since

no requirements documentation is maintained after projects are closed, the company

does not have a comprehensive set of requirements, such as a requirements database,

that reflects the current software. Requirements knowledge is instead acquired

through other sources of information (see section 5.2), such as other documents, tests

1. Requirements
only documented

during projects

2. High level
requirements

3. Demos, quality
measurements and

benchmarking as
requirements

4. Emphasis on
direct, informal
communication

72

and colleagues who may have more experience in the matter at hand. From an RE

perspective, the requirements related documentation was found to have two primary

purposes at the company (see section 5.9.2). The first purpose is to act as “hand-

shake”, a way of confirming that there is common understanding between the differ-

ent stakeholders of a project. The second purpose is to act as reference documenta-

tion, storing important knowledge for future reference. However, as the requirements

are not comprehensive and maintained, there is little requirements documentation

acting as reference documentation. Instead, the closest alternative is the functional

descriptions, which are maintained continuously.

Secondly, since the orderer in many cases specifies the project's task on a high lev-

el, explaining the problem that needs to be solved rather than how to solve it, the team

can design its solution in the way that they see fit (see section 5.1). This means that

the orderer contributes with higher level requirements input, whereas the team itself

elicits the more detailed requirements.

Thirdly, the company uses a certain set of methods for dealing with requirements.

These methods include the use of demos in projects as a way of getting quick feed-

back from the orderer, as well as the process for handling quality requirements. Since

putting quality requirements on the platform is a complex activity, the company has

started to measure quality aspects in the different products that are using the platform

(see section 5.3.1). This allows the company to monitor the evolution of the quality

aspects and catch trends of declining quality at an early phase. Additionally, the com-

pany uses benchmarking as requirements in some cases (see section 5.4). This means

that earlier platform versions, or software in specific products, are used for compari-

son, allowing an orderer to specify new functionality in terms of old software. Alt-

hough this study cannot conclude whether or not this approach can be seen as benefi-

cial, it is an interesting approach. The reason for this is that the approach potentially

could allow much requirements documentation to remain unwritten without signifi-

cant drawbacks – saving time and money at the same time as facilitating further use of

a process with limited requirements documentation.

Fourthly, the culture at the company focuses on openness as well as informal and

direct communication, where face-to-face communication in particular is emphasized.

In practice this is seen through an open climate at the company, where asking ques-

tions is always allowed, and a tight interaction between employees in general. A pro-

ject team, for example, normally has close contact with its orderer, discussing the

scope and the details of the project iteratively. This helps the team to overcome issues

related to the order, which in many cases is written in a way that is perceived as un-

clear and vague by developers (see section 365.1).

73

6.1.2 RQ2: Are there any factors at Axis Communications AB that facilitate soft-

ware development with the current requirements process?

In order to enable the use of the current requirements process, several important

factors have been identified at the company. These factors relate primarily to cultural

and organizational aspects and are summarized in Figure 4.

 Figure 4. Summary of the facilitating factors found at the company.

Within the cultural area, the main factors include the nature of the communication

between employees at the company (see section 5.9) and the emphasis on engineers to

understand a wide perspective of the company's activities (see section 5.10.3). The

communication inside the company is shaped by the culture of helpfulness and coop-

eration, which are traits included in one of the company's core values – Act as One.

This creates a communication climate where, as previously mentioned, a lot of com-

munication is done informally and face-to-face. The results also showed that many

employees favor face-to-face communication over documentation and being commu-

nicative is seen as an important trait for engineers in the company (see section 5.9.1).

As a whole, the communication seems to facilitate networking and knowledge shar-

ing, which might be one of the reasons why the aspect of acquiring requirements in-

formation directly through colleagues, rather than through documentation, works well

at the company. The concept of understanding the wide perspective includes aspects

such as an understanding of the company's business model and other departments (see

section 5.10.3). The emphasis on engineers to understand this perspective is reflected

in the company's career ladder for engineers, a ladder that besides technical compe-

1. Company culture and
focus on understanding a

wide perspective

2. Internal, embedded
development in a co-located
environment, low personnel
turnover and current size of

the development
organization.

3. Dedication of QA
resources to projects and

high availability of the
orderer

74

tency also focuses on this understanding. For more details, e.g. regarding what conse-

quences this understanding has on the requirements process, see section 5.10.3.

Multiple additional factors, relating to the organizational dimension, have been

identified in this study. On the highest level, the characteristics of the development

play an important part. Specifically, the employees are doing internal, embedded de-

velopment in a co-located environment, naturally giving some immediate conse-

quences. For example, face-to-face communication is facilitated by co-located devel-

opers. Also, since the development is internal, less emphasis can be put on the re-

quirements as a form of contractual agreement, compared to situations where devel-

opment is conducted based on such a contract. Furthermore, the fact that the company

has a low personnel turnover means less knowledge is lost due to employees who

quit, reducing the dependence on documentation to mitigate such losses. It might also

be possible that the scale of the development at the company influences the viability

of the requirements process. For example, a more large scale software development

company would perhaps need a more structured process to aid the coordination of its

employees.

On a somewhat lower level, some factors are related to the organization of the de-

partments and teams at the company. Specifically, the dedication of QA resources to

projects means that more knowledge can be shared verbally (see section 5.10.2), re-

ducing the need for documentation during the course of a project. Additionally, the

availability of the orderer is in most of the cases high, which gives the team the op-

portunity of continuously clarifying what is demanded from them.

6.1.3 RQ3: What benefits does Axis Communications AB gain from using the cur-

rent requirements process?

In this section, the benefits of the current requirements process are discussed. The

benefits are summarized in Figure 5.

75

 Figure 5. Summary of the benefits of the company’s requirements process.

Some of the main benefits with having a process, in any scenario, with limited re-

quirements documentation relate to that the process as such is easier to handle. Firstly,

such a process is more clear and simple for the employees to understand and less

complex for senior management to change, as there are fewer details to take into con-

sideration. Furthermore, the company’s requirements process is designed in such a

way that the individual project teams get a certain amount of freedom to extend it

according to their needs, e.g. a team can write more documentation than demanded by

the process if the need arises. Therefore, the restrictions for each team are fewer with

a process which enables each team to choose the approach that they feel is more effi-

cient. This relates closely to the concept of self-organizing teams, which has been

argued (see section 2.1 “Agile software development”) to be an important factor for

the success of agile projects. In this sense, the self-organization of teams at the com-

pany creates a potential for decentralized decision making and cost efficient work,

while at the same time maintaining agility and enabling each team to alter its own

extensions of the process.

Additionally, in a process with more detail and rigor there might be a need for en-

suring that the work of each team is conducted according to the process. This can be

done through information and education, but also through enforcement in different

ways. Not having a process with many details and rigor means fewer resources have

to be put toward this purpose. Moreover, as there is no single best process that fits in

1.Easier to handle
and follow

2. Reduces the
need for enforcing
compliance with

the process

3. Allows the
orderer to specify

high level
requirements

4. Increases the
orderer’s flexibility

5. Contributes to
the company’s

culture

76

all teams simultaneously and takes the different conditions of all teams into account,

some variance in how the process is used in practice might be necessary. Through

allowing different teams to work in somewhat different ways, this challenge is ad-

dressed in a way that is significantly less resource intensive.

However, the company’s requirements process also has other, more apparent, ben-

efits. First of all, the orderers are allowed to specify high level requirements and leave

the details of how to implement them to the project team (see section 5.1). Through

this approach, the orderer can focus more on other areas, e.g. keeping track of the

customers' needs. The team, being specialized in their specific area, is at the same

time allowed to design the best possible solution from their perspective, which could

improve the quality and/or reduce the cost of the solution.

Also, due to the high level of the order that is written initially in a project (see sec-

tion 5.1), the orderer gains some flexibility in changing the scope or the requirements

of the task during the project. This flexibility is most apparent in comparison with

more rigorous requirements documentation methods, where changing requirements

become more cumbersome to do as the requirements are already specified in detail.

According to previous research, see section 2.3 (“Software Product Line Engineer-

ing”), this type of flexibility is beneficial particularly in environments with market

volatility, where requirements change suddenly and/or frequently.

Besides these benefits, relating to the division of work between a project and the

orderer, there are also some benefits which relate more to the culture of the company.

The company’s requirements process can be argued to contribute to the current com-

pany culture, which just as the requirements process focuses on face-to-face commu-

nication, helpfulness and interaction, rather than communication through documenta-

tion. It was indicated that using direct communication gives positive side-effects such

as networking between employees and an increased understanding of other parts in

the organization. Additionally, the requirements process facilitates knowledge shar-

ing, both between teams and between departments (see section 5.10.2).

6.1.4 RQ4: What challenges does Axis Communications AB face due to the use of

the current requirements process?

In the data, many challenges were found. The most relevant ones are brought up

here and discussed. A summary of the most significant challenges can be found in

Figure 6. Interestingly, the challenges are in more detail than the benefits. The reason

for this might be that interviewees in general find it easier to perceive challenges than

to perceive what benefits they receive through the process.

77

 Figure 6. Summary of the main challenges found in the study.

Corresponding to the section 5.5 “Implications of the company’s requirements pro-

cess”, several issues were found relating directly to the company’s requirements pro-

cess. Firstly, finding out both what the correct behavior of certain functionality is (see

section 5.5.1), as well as which of the platform’s functionality that is included in a

piece of software (see section 5.5.2), seemed to create some difficulty for the employ-

ees. However, the latter was not substantiated by any developers, which constituted

the majority of the interviewees. Hence, the interview data for this difficulty is not

comprehensive, even though the difficulty was expressed by representatives from

both QA and Product Management.

Secondly, complementary information about requirements was desired by several

interviewees (see section 5.5.3). This type of information, such as who ordered the

functionality, why it is important and who it is important for, is in many cases not

available in written form. Thus, employees have to depend on individuals in order to

acquire this knowledge, in some cases causing difficulties in acquiring the infor-

mation. According to the interview data, this could create issues when trying to re-

move unwanted functionality, as the purpose and usage areas of the functionality is

hard to understand without that kind of information.

Thirdly, interviews with QA representatives indicated that there are difficulties in

choosing test cases for a piece of software. This hardship is related to the absence of

traceability between different software and tests, the lack of historical test data and

the aforementioned difficulty in knowing what functionality is included in a piece of

1.Finding out the correct
behavior of certain

functionality and which
functionality that is included

in a piece of software

2. Lack of complementary
information about

requirements in written
form

3. Difficult to choose test
cases for a piece of software

4. Confusion regarding what
level the quality

requirements are and the
reasoning behind the

chosen level

78

software (for details see section 5.5.4 “Choosing what test cases to run”). One of the

reasons for this challenge is that there is a certain complexity in choosing test cases

for a piece of software, as the actual functionality in the software varies with several

factors, such as what product and platform version is being tested. Although a more

rigorous documentation of requirements, including traceability to products, platform

versions and test cases, could facilitate the process of choosing test cases, maintaining

that kind of traceability is presumably neither an easy nor a cheap task. As the com-

pany’s own ongoing improvements, specifically the development of the feature lists,

have the potential to mitigate this challenge, it might be reasonable to reevaluate the

challenge after the implementations of these improvements are complete.

Another challenging area in general is the quality requirements at the company (see

section 5.3). This study has shown that there is confusion regarding what the level of

the quality attributes as well as what the reason for selecting the specific values are.

One explanation for this might be that putting quality requirements on the platform is

a complex activity, e.g. due to the variability of the products (different functionality

and different hardware in many combinations). Additionally, the demands from the

customers increase steadily over time, causing quality aspects like performance to

need constant improvement. This contributes to making the specification of quality

requirements a difficult and perhaps cumbersome activity. In turn, this might be a

reason for the fact that the company is attempting to manage quality aspects through

measuring them directly on the product, thus getting an overview of how the software

performs in the different settings. However, as this approach was questioned by a few

of the interviewees from QA, it is not certain that the approach is appropriate. Future

work is needed in this regard to verify whether or not measurements are an adequate

method for managing evolution of quality aspects.

Finally, two challenges relating to soft factors within the company were explored

in section 5.10. Firstly, according to the literature found in the literature review, the

introduction of new employees was presented as one factor which might be trouble-

some in a requirements setting with limited documentation (see section 2.2.3 “The

challenges of Agile Requirements Engineering”). However, the most newly employed

interviewees at the company did not consider the absence of requirements to be one of

the main challenges for new employees (see section 5.10.1). Rather, the challenges

for new employees seemed to mainly relate to other topics, such as tools and integra-

tion procedures, which cannot be facilitated by requirements documentation. Thus,

although some interviewees indicated that newly employed require more time than

necessary from experienced employees, it cannot be concluded whether or not more

rigorous requirements documentation would make the introduction of new employees

more efficient.

Secondly, several facts point to that the dependence on individuals at the company

is high, due to the low amount of requirements documentation. For example, the high

79

level of the order documents cause dependence on the orderers, as the teams need

further information in order to conduct the projects in an appropriate manner. Also,

the difficulties in finding the correct behavior through documentation can be argued

to lead to a dependence on the individuals who can explain what the correct behavior

is. While some interviewees pointed to this dependence as a risk for the company,

likely causing knowledge loss when employees quit or become available, other inter-

view data suggested that the challenge is mitigated in a number of ways (see section

5.10.2). As this topic was explored, it was found that some employees did not per-

ceive this as a major risk. The reason for this might be that the dependence is mitigat-

ed through factors such as knowledge sharing and low personnel turnover. Therefore,

even if knowledgeable employees are always a major asset for companies, it is hard to

assess the significance of this challenge and whether or not more rigorous require-

ments documentation would provide any significant increase in the mitigation of the

knowledge loss.

6.1.5 RQ5: What can be said about the scalability of the requirements process

used at Axis Communications AB?

This topic is mainly treated in the section 5.7 “The scalability of the requirements

process”, where the analysis of the collected data has been done in more detail. From

this analysis, it is clear that employees do not see scalability as a major issue at the

company, at least not due to the company’s requirements process. Instead, a limited

amount of documentation was seen as a condition for keeping the process scalable.

Therefore, scalability due to company growth does not seem to be a major risk for the

company.

However, one can argue that it will be hard to continue using the company’s re-

quirements process if more employees conduct distributed development. Distributed

development might make it difficult to use direct communication as means of sharing

requirements knowledge. In this case, more rigorous requirements documentation

might be warranted, as it could be used to substitute the current approach of empha-

sizing direct communication. In other words, requirements documentation could be

written as a way of reducing the dependence on direct communication, which might

be harder to have in a distributed setting.

Still, it seems like the company is aware of the general challenges associated with

scalability and is taking measures in order to mitigate them. For example, the compa-

ny uses architectural refactoring, thus reducing the dependence between different

teams and thereby also the amount of questions (e.g. about requirements) that needs to

be asked between them. Also, the company has implemented several modifications

both to the development process and to the organization in recent years due to its

rapid growth. All in all, this points to that the company is in control of scalability and

the issues that might be associated to it.

80

6.1.6 RQ6: Would the implementation of a requirements database be a viable

option for Axis Communications AB?

Implementing a requirements database is perhaps the most obvious undertaking

from an RE point of view. From this perspective, a requirements database would im-

prove several aspects of how the requirements are handled. However, whether a re-

quirements database would actually be beneficial for the company from the larger

business perspective is not certain. There are also organizational challenges relating to

implementation. Here follows some background on the topic as well as the implica-

tions that an implementation of a requirements database would have, including the

work needed to specify the requirements, the costs of implementing a tool and the

organizational challenges.

In the current process, no requirements documentation is maintained after a project

is completed. From a requirements perspective, the most interesting artifacts that are

currently being maintained past a project's closure are test cases, functional descrip-

tions and the products themselves. However, none of these artifacts can tell whether

or not the current behavior of the software is the intended one. Some interviewees

claimed that test cases are doing this (see the last quote in section 5.2), but the chal-

lenge in this regard is to handle a situation where confusion arises around the test

cases' correctness. The interviews have shown that a common way for clearing confu-

sion is simply asking a relevant person for guidance. Though many at the company

are content with this approach, it creates a certain dependence on individuals (see

section 5.10.2).

One way to address these challenges could be through having more clear defini-

tions of the requirements and storing them in a requirements database. However, in-

vestigating the detailed implications of implementing a requirements database is a

complex task, simply due to the many parties that potentially will interact with it and

the complexity of estimating how their work will be affected. The complexity is fur-

ther increased due to the complicated nature of the organization, the platform and the

different products that the platform adapts to. Handling the variability of the platform,

depending on which product it is implemented in, is not trivial from an RE perspec-

tive.

The implementation of a requirements database would also mean a challenging or-

ganizational change for the company. The costs of its implementation could potential-

ly become high. This is especially due to the low amount of clearly specified require-

ments in the current software, which would create the need to “elicit” the require-

ments on the current platform again in order to specify them. As older versions of the

platform are in use by customers, there is some motivation for specifying the re-

quirements also for the older versions. Unfortunately, doing this for any older plat-

form versions would increase the costs even further. Additionally, there are also costs

tied to implementation of a requirements management tool, which likely would be

81

needed in order to handle the sizable amount of requirements that the company cur-

rently has. For example, these costs include researching and choosing a tool, imple-

menting the tool with regards to both infrastructure and training of employees, as well

as possible costs associated to the tool directly (such as license fees).

However, it is not certain that even a successful implementation of a requirements

database would be beneficial for the company. The interviews have shown that the

culture at the company tends to emphasize face-to-face communication. A require-

ments database would likely not facilitate this emphasis, as it would probably mean a

significant increase in written requirements. Respectively, since a requirements data-

base emphasizes this written form of requirements rather than face-to-face communi-

cation, a database might not be facilitated by the company's culture to the same extent

that the current process is.

Also, even though a requirements database could improve certain activities relating

to requirements, for example making the creation of test cases more efficient, it would

at the same time mean a significant amount of extra work. This work would include

implementation of the infrastructure, extracting all the implicit requirements currently

present and then maintaining them. Furthermore, due to the culture at the company

and the general focus on keeping the processes light, it seems there are some chal-

lenges to overcome relating to human factors. For example, the impression that the

authors of this report have gotten during the interviews is that there is a general re-

sistance against heavy processes and documentation. This indicates that many in the

company would not welcome a requirements database, increasing the difficulty of

successfully implementing one.

Due to these various difficulties of implementing and maintaining a requirements

database, the choice of whether to add a requirements database or not is not trivial.

Any requirements database that is implemented should still be light, in order to reduce

the difficulties. However, challenges still remain, such as the division of responsibili-

ties relating to a requirements database and changing organizational routines and

practices around it. As these difficulties are both uncertain and possibly large, the

viability of implementing even a light requirements database should be further inves-

tigated.

Another possible approach would be to do smaller modifications to the documenta-

tion in order to improve the general requirements process. One of these modifications

could be to collect requirements related documentation such as the PFDs and the CDs

in a common place at the company's intranet. This could be a viable option, as the

cost for implementing this would likely be low. As of now, PFDs are stored both on

the intranet and in Git, but it is mainly the PFDs in Git that are updated. Since the

interviews gave an example of that some people outside the platform development

department use the PFDs at the intranet it can therefore be a good idea to collect the

PFDs in a common place where they are kept updated. This would also make it easier

82

to get an overview of the available functionality, somewhat mitigating the issues with

knowing what functionality is included in the LFP. As developers are not as con-

cerned with getting an overview, a centralized place where the documents are stored

would primarily help people outside of the development organization.

6.2 Threats to validity and limitations

This section addresses the different threats to validity and limitations that were pre-

sent in the study. As the interviews were captured in transcriptions, the main threat to

description validity is that the transcriptions did not reflect the interviews. To deal

with this threat, each interview was recorded and the transcriptions were thereafter

based on those recordings. Reliability of the transcriptions was further enhanced

through sending the interview transcriptions back to the interviewees, who could then

confirm their correctness. Additionally, the interviews were anonymous in order to

encourage honesty among the interviewees.

As for interpretation validity, the main threats were the formulation of questions

during the interviews as well as the analysis of the transcriptions. In order to handle

these threats, care was taken to avoid conscious and unconscious observer bias. For

this purpose, special effort was put towards assessing the openness of the questions

which were asked early during the interviews, reducing the risk of imposing the re-

searchers’ theories on the interviewees. Discussions were also held continuously dur-

ing the study to challenge the assumptions of each researcher. Additionally, the inter-

view instrument was reviewed by several outside parties in order to ensure its appro-

priateness. Regarding the data analysis, specifically the formulation of statements and

assertions explained in section 4.2.3, the main threat to validity consisted of wrongly

interpreting the transcriptions. However, this was dealt with through the concept of

constant comparison, confirming statements and assertions continuously by compar-

ing them with the interview transcriptions. Finally, special care was also taken to

avoid the risk of presenting any quotes outside of their context. In practice, this was

done through revisiting the recordings each time a quote was extracted. Any uncer-

tainties in this regard was brought up explicitly by the researchers and addressed in

cooperation.

Internal generalizability was addressed through including interviewees with differ-

ent experience and roles, from several different departments, in the data collection

phase. Nonetheless, not all perspectives might have been explored in greater detail

from an organizational point of view, as this was unfeasible due to the size and com-

plexity of the company. Considering external generalizability, the main restriction is

the fact that only one company was included in the study. Thus, the results in this

thesis have not been tested in other contexts and are therefore not generalizable for all

companies conducting software development. However, creating a comprehensive

theory that could be used by the software industry or research community was not the

aim of this thesis.

83

Besides the above threats to validity, three general limitations were also identified

in the study. Firstly, since the scope of the research questions has been wide, more

efforts have been put towards getting a rich set of data on the research questions. This

was done through qualitative data collection methods. Because of the width of the

research questions, detailed exploration on some aspects had to be left out. Another

implication of this wide focus was that the concept of theoretical sampling in Ground-

ed Theory was used. Adopting theoretical sampling in this study meant constantly

striving for more details and deeper understanding, rather than to repeat the same

questions in order to quantify the concepts already identified. Because of the use of

this concept, this study followed a principle where more than one occurrence of a

statement was considered to fulfill saturation. The purpose of presenting the quantifi-

cations in this report is mainly to highlight if it was one or more interviewees who

expressed a certain thing. In cases where there were several interviewees these were

presented with their corresponding code in order to convey role and approximate

experience. Because of the above, the reader of this thesis needs to be advised that

any interpretation that is based on the quantifications of the interview results in this

study must be performed with great caution. It should, for example, be made clear that

the quantifications are not statistically significant, as verifying the significance of the

identified concepts was not within the scope of this exploratory study. Whether or not

this saturation strategy is a feasible approach in this context remains to be shown by

future studies.

Secondly, certain aspects of Grounded Theory could not be adopted. One of these

aspects is the concept of theoretical saturation [16], achieved through continued data

collection until additional data does not add any value to the theoretical model being

developed. Given the scope of this thesis, theoretical saturation would not have been

achieved without conducting a significant amount of additional interviews. Further-

more, Grounded Theory focuses on social aspects, such as values, beliefs and behav-

ior, and not on processes, costs and efficiency, which were the main topics of this

thesis. Finally, this study did not aim to build a theoretical model, which is the fun-

damental purpose of Grounded Theory. Based on these reasons, applying Grounded

Theory as described by Corbin and Strauss [16] would not have been feasible in this

context. Given the constraints, the methodology was modified during the study in

order to adjust it to the width of the research questions. However, as the modifications

were tailored to the specific context of this study, the methodology used in this report

has not been validated by the research community.

Thirdly, the only process being evaluated in this report was the requirements pro-

cess as used by the interviewees, rather than the written one. This means that no eval-

uation of the specified requirements process and how it compares to the actual process

were done, which is commonly done when conducting case studies in the field. The

reason for not doing a comparison between the specified process and the actual was

84

that the platform development organization lacked a clear definition of its require-

ments process, making a comparison impossible. Due to this constraint, this research

did not elaborate on how well the specified requirements process in the platform de-

velopment organization is followed by its employees.

6.3 Future work

As this study has a broad scope as well as an exploratory approach, not all aspects

that are presented have been thoroughly verified. Thus, future work is needed to veri-

fy these aspects. In the report where these aspects are presented, the need for addi-

tional verification has in many cases been brought up explicitly.

In order to further validate the findings of this study, more data could be collected

from other parts of the organization. For example, conducting interviews in depart-

ments such as NVP, System Applications and Technical Information Management

would give a more comprehensive view of how the requirements process affects the

different parts of the company.

Furthermore, assessing the viability of using benchmarking as requirements, as this

company is doing it, provides an intriguing area for further research. Through addi-

tional work, the benefits and the drawbacks can be revealed. Also, the interesting

question of whether or not such an approach can aid the minimization of costs, both

short term and long term, in a development organization can be answered.

Finally, future work is needed to assess the applicability of the company’s re-

quirements process in other contexts. This would make it possible to conclude wheth-

er or not all parts of the unique context that Axis Communications AB has, is needed

for the use of the process. It would also be interesting to investigate the similarities

between the way this company is working and that of the development in open source

communities [53], in order to assess the applicability of open source development

practices in proprietary development.

 Conclusion 7

This thesis was conducted in order to explore and evaluate the RE process used at

Axis Communications AB. Thus, the study has described the requirements process

used at Axis and the factors that facilitate it. Also, the main benefits and challenges

that are linked to this process were presented. Lastly, the scalability of the process as

well as the viability of a requirements database in the company's context were elabo-

rated on in this thesis.

The research has shown how the company handles requirements in a context where

SPLE concepts are combined with agile software development. The company uses a

85

requirements process where no requirements documentation is maintained over time.

Rather, other sources of information, such as the employees' individual knowledge,

are used in order to convey the requirements of the software. Based on the exploration

of previous research relating to lightweight requirements, the process seems to be

lightweight. Furthermore, the process is facilitated by a number of different factors,

including the company's culture and organization, and was shown to yield several

benefits and challenges. Regardless, scalability does currently not seem to represent a

major challenge and the company is taking measures in order to keep the process

scalable. Regarding the viability of a requirements database in the company's context

this thesis concludes that the implementation of a requirements database is not a trivi-

al task. Instead, smaller modifications to the process could be an alternative option for

the company.

The company’s requirements process can be recommended in contexts where it is

applicable, since it has the potential to reduce the costs associated to having a more

rigorous requirements process. However, the contexts where this process is applicable

could demand several of the characteristics that are present in the company. For ex-

ample, internal, embedded development in a co-located environment with a company

culture that facilitates communication could be important factors to have. At the very

least, the authors of this report would suggest that such a requirements process is only

applied in a setting where the development is internal and developers are co-located.

Also, due to the difficulties shown in the testing area, the process should perhaps not

be used in a setting where undiscovered defects can cause substantial damage or loss

of life. One reason for this recommendation is that previous research has showed that

more documentation, with greater detail, is needed in these contexts (see section 1

“Agile Requirements Engineering and its practices”).

This thesis has presented several interesting concepts used in the company's re-

quirements process. These include the use of benchmarking and products as require-

ments. The thesis has also elaborated on how quality requirements are managed in a

company that develops both software and hardware in a context where SPLE is com-

bined with agile software development. Finally, since the company has increased the

amount of other kinds of documentation as a result of growing in size, additional re-

quirements related documentation might be necessary at some point in time. Current-

ly, however, it seems that the company intends on doing this through functional de-

scriptions and testing artifacts, rather than through traditional requirements documen-

tation.

86

 References 8

[1] Adam, S.; Doerr, J. & Eisenbarth, M. (2009), Lessons Learned from Best Practice-

Oriented Process Improvement in Requirements Engineering: A Glance into Current In-

dustrial RE Application, in 'Requirements Engineering Education and Training (REET),

2009 Fourth International Workshop', pp. 1-5.

[2] Adam, S.; Riegel, N. & Gross, A.Richard Berntsson Svensson, Daniel Berry, (2012),

Focusing on the “Right” Requirements by Considering Information Needs, Priorities,

and Constraints, Chapter 3, Requirements Engineering Efficiency Workshop (REEW),

pp. 68-74.

[3] Alford, W. & Lawson, J. (1979), Software Requirements Engineering Methodology (de-

velopment), Rome Air Development Center, Air Force Systems Command.

[4] Ali Babar, M.; Ihme, T. & Pikkarainen, M. (2009), An Industrial Case of Exploiting

Product Line Architectures in Agile Software Development, in 'Proceedings of the 13th

International Software Product Line Conference', Carnegie Mellon University, Pittsburgh,

PA, USA, pp. 171-179.

[5] Ambler, S. (2012), What does it mean to be "Big"? The agile scaling model, Cutter IT

Journal 25(2), 6 - 10.

[6] Bakalova Z., Daneva M., Herrmann A. & Wieringa R. (2011), Agile Requirements Pri-

oritization: What Happens in Practice and What Is Described in Literature, Require-

ments Engineering: Foundation for Software Quality, Springer, Section 7, pp. 181-195.

[7] Batool, A.; Motla, Y.; Hamid, B.; Asghar, S.; Riaz, M.; Mukhtar, M. & Ahmed, M.

(2013), Comparative study of traditional requirement engineering and Agile requirement

engineering, in 'Advanced Communication Technology (ICACT), 2013 15th International

Conference', pp. 1006-1014.

[8] Beck, K. (1999), Embracing change with extreme programming, Computer 32(10), 70 -

77.

[9] Beck, K.; Beedle, M.; van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.;

Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries, R.; Kern, J.; Marick, B.; Martin, R. C.;

Mellor, S.; Schwaber, K.; Sutherland, J. & Thomas, D. (2001), Manifesto for Agile Soft-

ware Development, URL: http://agilemanifesto.org/

[10] Bjarnason, E.; Wnuk, K. & Regnell, B. (2011), A case study on benefits and side-effects

of agile practices in large-scale requirements engineering, in 'Proceedings of the 1st Ag-

ile Requirements Engineering Workshop, AREW'11 - In Conjunction with ECOOP'11'.

[11] Blau, B. & Hildenbrand, T. (2011), Product Line Engineering in Large-Scale Lean and

Agile Software Product Development Environments - Towards a Hybrid Approach to De-

central Control and Managed Reuse, in '2011 Sixth International Conference on Availa-

bility, Reliability and Security', pp. 404 - 8.

[12] Boehm, B. (2000), Requirements that handle IKIWISI, COTS, and rapid change, Com-

puter 33(7), 99 - 102.

[13] Bose, S.; Kurhekar, M. & Ghoshal, J. (2008), Agile methodology in requirements engi-

neering.

[14] Cao, L. & Ramesh, B. (2008), Agile requirements engineering practices: An empirical

study, IEEE Software 25(1), 60 - 67.

[15] Cockburn, A. (2000), Selecting a project's methodology, IEEE Software 17(4), 64 - 71.

[16] Corbin, J. & Strauss, A. (2008), Basics of Qualitative Research: Techniques and Proce-

dures for Developing Grounded Theory, SAGE Publications.

[17] De Lucia, A. & Qusef, A. (2010), Requirements Engineering in Agile Software Develop-

ment, Journal of Emerging Technologies in Web Intelligence 2(3), 212 - 20.

87

[18] Delgadillo, L. & Gotel, O. (2007), Story-wall: a concept for lightweight requirements

management, in '2007 IEEE International Conference on Requirements Engineering', pp.

377 - 8.

[19] Diaz, J.; Perez, J.; Alarcon, P. & Garbajosa, J. (2011), Agile product line engineering: a

systematic literature review, Software: Practice and Experience 41(8), 921 - 41.

[20] Diaz, J.; Perez, J.; Yague, A. & Garbajosa, J. (2011), Tailoring the scrum development

process to address agile product line engineering, in 'Actas de las 16th Jornadas de Inge-

nieria del Software y Bases de Datos, JISBD 2011', pp. 457 - 470.

[21] Doerr, J.; Kerkow, D.; Koenig, T.; Olsson, T. & Suzuki, T. (2005), Non-functional re-

quirements in industry - Three case studies adopting an experience-based NFR method,

in 'Proceedings of the IEEE International Conference on Requirements Engineering', pp.

373 - 382.

[22] Eberlein, A. & Leite, J. (2002), Agile requirements definition: A view from requirements

engineering.

[23] Ernst, N. & Murphy, G. (2012), Case studies in just-in-time requirements analysis, in

'Proceedings of the 2012 IEEE Second International Workshop on Empirical Require-

ments Engineering (EmpiRE)', pp. 25 - 32.

[24] Farid, W. (2012), The NORMAP Methodology: Lightweight Engineering of Non-

functional Requirements for Agile Processes, in 'Proceedings of the 2012 19th Asia-

Pacific Software Engineering Conference (APSEC)', pp. 322 - 5.

[25] Farid, W. & Mitropoulos, F. (2012), Novel lightweight engineering artifacts for modeling

non-functional requirements in agile processes, in '2012 Proceedings of IEEE South-

eastcon'.

[26] Forward, A. & Lethbridge, T. C. (2002), The Relevance of Software Documentation,

Tools and Technologies: A Survey, in 'Proceedings of the 2002 ACM Symposium on

Document Engineering', pp. 26 - 33.

[27] Gallardo-Valencia, R. & Sim, S. (2009), Continuous and Collaborative Validation: A

Field Study of Requirements Knowledge in Agile, in '2009 Second International Work-

shop on Managing Requirements Knowledge (MARK 2009)'.

[28] Gorschek, T. & Wohlin, C. (2005), Requirements Abstraction Model, Requirements En-

gineering 11(1), 79-101.

[29] Heikkila, V.; Rautiainen, K. & Jansen, S. (2010), A revelatory case study on scaling agile

release planning, in 'Proceedings - 36th EUROMICRO Conference on Software Engi-

neering and Advanced Applications, SEAA 2010', pp. 289 - 296.

[30] Hoda, R.; Noble, J. & Marshall, S. (2012), Documentation strategies on agile software

development projects, International Journal of Agile and Extreme Software Development

1(1), 23 - 37.

[31] Hoda, R.; Noble, J. & Marshall, S. (2013), Self-organizing roles on agile software devel-

opment teams, IEEE Transactions on Software Engineering 39(3), 422 - 444.

[32] Hoda, R.; Noble, J. & Marshall, S. (2011), Supporting self-organizing agile teams what's

senior management got to do with it?, in 'Lecture Notes in Business Information Pro-

cessing', pp. 73 - 87.

[33] Hoda, R.; Noble, J. & Marshall, S. (2011), How much is just enough? Some documenta-

tion patterns on Agile projects, in 'ACM International Conference Proceeding Series'.

[34] Hofmann, H. F. & Lehner, F. (2001), Requirements Engineering as a Success Factor in

Software Projects., IEEE Software 18(4), 58-66.

[35] Jacobs E. (2012), “Executive Brief: Tracking Trends in Employee Turnover”, Society for

Human Resource Management.

[36] Kovitz, B. (2003), Hidden skills that support phased and agile requirements engineering,

Requirements Engineering 8(2), 135 - 41.

[37] Lauesen, S. (2001), Software Requirements: Styles and Techniques, Pearson Education.

88

[38] Maiden, N. & Jones, S. (2010), Agile Requirements - Can We Have Our Cake and Eat It

Too?, IEEE Software 27(3), 87 - 8.

[39] Middleton, P. (2001), Lean software development: two case studies, Software Quality

Journal 9(4), 241 - 52.

[40] Mohan, K.; Ramesh, B. & Sugumaran, V. (2010), Integrating software product line engi-

neering and agile development, IEEE Software 27(3), 48 - 55.

[41] Nanthaamornphong, A.; Morris, K.; Rouson, D. W. I. & Michelsen, H. A. (2013), A case

study: Agile development in the community laser-induced incandescence modeling envi-

ronment (CLiiME), in '2013 5th International Workshop on Software Engineering for

Computational Science and Engineering, SE-CSE 2013 - Proceedings', pp. 9 - 18.

[42] Nawrocki, J.; Jasinski, M.; Walter, B. & Wojciechowski, A. (2002), Extreme program-

ming modified: embrace requirements engineering practices, in 'Proceedings IEEE Joint

International Conference on Requirements Engineering', pp. 303 - 10.

[43] Paetsch, F.; Eberlein, A. & Maurer, F. (2003), Requirements engineering and agile soft-

ware development, in 'Proceedings of the Twelfth IEEE International Workshop on Ena-

bling Technologies: Infrastructure for Collaborative Enterprises', pp. 308 - 13.

[44] Racheva, Z. & Daneva, M. (2010), How Do Real Options Concepts Fit in Agile Require-

ments Engineering?, in 'Proceedings 8th ACIS International Conference on Software En-

gineering Research, Management and Applications (SERA 2010)', pp. 231 - 8.

[45] Racheva, Z.; Daneva, M. & Buglione, L. (2008), Supporting the dynamic reprioritization

of requirements in agile development of software products, in '2008 2nd International

Workshop on Software Product Management, ISWPM'08'.

[46] Ramesh, B.; Cao, L. & Baskerville, R. (2010), Agile requirements engineering practices

and challenges: an empirical study, Information Systems Journal 20(5), 449 - 480.

[47] Rekaby, A. & Soliman, M. (2011), Towards Intermediate-Agile Model Based On Agile

Through Requirement Management And Development Enhancements, in 'Proceedings of

the 2011 International Conference on Software Engineering Research & Practice (SERP

2011)', pp. 686 - 90.

[48] Robson, C. (2002), Real World Research - A Resource for Social Scientists and Practi-

tioner-Researchers, Blackwell Publishing, Malden.

[49] Rubin, E. & Rubin, H. (2011), Supporting agile software development through active

documentation, Requirements Engineering 16(2), 117 - 132.

[50] Runeson, P.; Host, M.; Rainer, A. & Regnell, B. (2012), Case Study Research in Software

Engineering: Guidelines and Examples, Wiley Publishing.

[51] Salvaneschi, P. (2009), Managing knowledge for information system evolution: the Min-

imalEDoc methodology, Software Process: Improvement and Practice 14(6), 337 - 47.

[52] Savolainen, J.; Kuusela, J. & Vilavaara, A. (2010), Transition to agile development redis-

covery of important requirements engineering practices, in Proceedings of the 2010 18th

IEEE International Requirements Engineering Conference, RE2010, pp. 289 - 294.

[53] Scacchi, W., (2008), Understanding Requirements for Open Source Software, Design

Requirements Engineering: A Ten-Year Perspective, Springer-Verlag, pp. 467-494.

[54] Sillitti, A.; Ceschi, M.; Russo, B. & Succi, G. (2005), Managing uncertainty in require-

ments: A survey in documentation-driven and Agile companies, in 'Proceedings - Interna-

tional Software Metrics Symposium', pp. 145 - 154.

[55] Sillitti, A. & Succi, G.Aurum, A. & Wohlin, C., ed., (2005), Requirements engineering

for agile methods, Engineering and managing software requirements, Springer, chapter

14, pp. 309-326.

[56] Vanhanen, J.; Mantyla, M. & Itkonen, J. (2009), Lightweight Elicitation and Analysis of

Software Product Quality Goals A Multiple Industrial Case Study, in '2009 Third Interna-

tional Workshop on Software Product Management (IWSPM 2009)', pp. 42 - 52.

89

[57] Vlaanderen, K.; Brinkkemper, S.; Jansen, S. & Jaspers, E. (2009), The Agile Require-

ments Refinery: Applying SCRUM Principles to Software Product Management, in '2009

Third International Workshop on Software Product Management (IWSPM 2009)', pp. 1 -

10.

[58] Waldmann, B. (2011), There's never enough time: Doing requirements under resource

constraints, and what requirements engineering can learn from agile development, in

'Proceedings of the 2011 IEEE 19th International Requirements Engineering Conference,

RE 2011', pp. 301 - 305.

[59] Wiegers, K. E. (2003), Software Requirements, Microsoft Press, Redmond, WA, USA.

[60] Zhang, Z.; Arvela, M.; Berki, E.; Muhonen, M.; Nummenmaa, J. & Poranen, T. (Sept.

2010), Towards Lightweight Requirements Documentation, Journal of Software Engi-

neering and Applications 3(9), 882 - 9.

90

A. Division of responsibility during the thesis work

The work in this master’s thesis was done in a collaborative way, where both indi-

viduals participated in all activities. The activities as such were for the most part con-

ducted with much discussion and with close to equal share of the work effort. Howev-

er, in order to give an overview of which person was more involved in the different

activities, this section presents the different activities together with the name of the

person with the main responsibility. The division is found in Table 4 below.

Table 4. Division of responsibilities between the authors of the study.

Activity Name of main

responsible

Pre-study of company Linus Ahlberg

Literature review Johannes Persson

Interview instrument design Linus Ahlberg

Interview conducting Johannes Persson

Interview transcription Linus Ahlberg

Interview analysis Johannes Persson

Introduction (report section) Linus Ahlberg

Background (report section) Linus Ahlberg

Case company (report section) Johannes Persson

Methodology (report section) Linus Ahlberg

An elaboration on the company’s

requirements process,

section 5.1-5.4 (report section)

Johannes Persson

An elaboration on the company’s

requirements process,

section 5.5-5.10 (report section)

Linus Ahlberg

Discussion (report section) Johannes Persson

Conclusion (report section) Linus Ahlberg

Appendices, Bibliography,

Layout

Linus Ahlberg

First page, abstract and

miscellaneous

Johannes Persson

Presentation preparations Johannes Persson

91

B. Interview instrument

This section contains the three interview guides used as a basis for the interviews

that were conducted in the study. As the interviews were semi-structured, not all ques-

tions asked are specified here and not all questions that are written here may have

been asked during all interviews.

B.1 For developers

Personal

1. What are your main duties and responsibilities?

2. What is your experience? For how long have you been working in your cur-

rent role?

The requirements process

3. Draw the requirements process on the board based on how you perceive it.

How do you get requirements? What do you do with the requirements? Do

you forward the requirements to anyone? Which of the requirements are

documented?

4. Do you experience any problems due to the process of documenting re-

quirements?

Interface towards orderers

5. How do your projects communicate with the orderer?

6. On what level are the requirements that your projects get from the orderer? Is

some information missing? Is it a problem?

7. How do your projects refine high level requirements? Are the refined re-

quirements stored anywhere and are they communicated back to the orderer?

8. How do your projects validate their output with the orderer?

9. Do your projects use prototypes? Does it work well?

Documentation

10. Which documents do you have in your projects?

11. Which documents must your projects produce?

12. Which documents do you use and how often do you use them?

13. What is the purpose of each document? Are all the documents and parts of

the documents necessary?

14. Do the documents contain any duplicated information?

15. Is the quality of the documents good enough for you to be able to work effi-

ciently?

16. Are you missing any documentation that could have been useful to you?

Knowledge sharing

17. What do you do when you need to know the functionality of the software?

Would more documentation be useful in this regard?

18. Do you have to answer many questions about how the software is working?

Who asks? Is it a problem?

19. Are there any typical questions? Could these questions be answered through

92

documentation?

20. Would you save time through documenting the answers rather than to answer

them yourself? Would the person asking the question save time? Overall,

would the organization benefit from documenting more?

21. Would it help you if other employees documented more? Would you rather

go through documentation than ask questions? Overall, would the organiza-

tion benefit from documenting more?

22. Is it possible to find out why a feature behaves the way it does? If not, is this

a problem? Do you need to know this?

23. Does the amount of questions increase as the company grows?

24. Do you see any risks, with regards to scalability, to keep working the way

the company does with requirements documentation?

25. How do your projects communicate with QA? How do they know the correct

behavior of the software when testing it?

26. How does your department introduce new employees? Do they experience

any problems due to the amount of requirements documentation that is avail-

able?

27. How is knowledge about changes in the software’s behavior communicated

to stakeholders?

28. Do you think any knowledge that is shared verbally needs to be document-

ed?

29. Do you think it is a risk that much knowledge about the software platform is

individual and not documented anywhere?

Other

30. Do your projects have any process that addresses quality requirements? If

not, how are these handled?

Extra

31. Do you experience that others complain about the documentation?

32. Is project specific documentation maintained? Why/why not? Do you need

to maintain documentation to the extent that you do?

33. Do you experience any other problems relating to the amount of require-

ments documentation?

34. Do other teams in your department work differently than your team does?

35. Do you see any connection between the amount of documentation in a pro-

ject and the successfulness of the project?

36. How many functional areas are usually affected by a typical project?

37. How is the platform organization affected by the product organization?

B.2 For testers

Personal

1. What are your main duties and responsibilities?

2. What is your experience? For how long have you been working in your cur-

rent role?

93

The company process

3. Based on what (e.g. documentation/communication) do you create your test

cases?

4. Do tests fail because QA have interpreted the requirements differently than

the developers? Does it happen often? Is it a problem?

5. Do you experience any problems due to the process of documenting re-

quirements?

6. Do QA have any process that addresses quality requirements? If not, how are

these handled?

Documentation

7. Which documents are produced by the projects?

8. Which documents do you use and how often do you use them?

9. What is the purpose of each document? Are all the documents and parts of

the documents necessary?

10. Do the documents contain any duplicated information?

11. Is the quality of the documents good enough for you to be able to work effi-

ciently?

12. Are you missing any documentation that could have been useful to you?

13. Do you feel QA in some way compensate for the lightweight requirements

documentation?

14. Do you think test cases in some way replace requirements documentation?

Does this approach yield any challenges and risks?

15. Do you feel that the requirements documentation is inconsistent with the ac-

tual functionality of the software platform?

16. Is some functionality in the software not specified? How are you notified

about this functionality? Is it tested?

17. Are inconsistencies in the content and scope of some documents a problem?

Knowledge sharing

18. How would you describe the cooperation between QA and the development

department?

19. How do you know what to test and what the expected behavior is?

20. How is QA notified when new functionality is developed?

21. Do you have to answer many questions about how the software should

work? Who asks? Is it a problem?

22. Are there any typical questions? Could these questions be answered through

documentation?

23. Would you save time through documenting the answers rather than to answer

them yourself? Would the person asking the question save time? Overall,

would the organization benefit from documenting more?

24. Would it help you if other employees documented more? Would you rather

go through documentation than ask questions? Overall, would the organiza-

tion benefit from documenting more?

25. Do the developers always remember functionality when you ask them about

it? What do you do if they do not or if they are unavailable?

26. Does the amount of questions increase as the company grows?

94

27. Do you see any risks, with regards to scalability, to keep working the way

the company does with requirements documentation?

28. How does your department introduce new employees? Do they experience

any problems due to the amount of requirements documentation that is avail-

able?

29. Is it clear to QA when the software’s functionality has been or will be

changed? How is QA notified about the content of the change?

30. How does QA know what test cases to update after a change to the require-

ments?

31. Do you think any knowledge that is shared verbally needs to be document-

ed?

32. Do you think it is a risk that much knowledge about the software platform is

individual and not documented anywhere?

Other

33. What are your thoughts about the general quality of the software at release?

Extra

34. Do you experience that others complain about the documentation?

35. Do you experience any other problems relating to the amount of require-

ments documentation?

B.3 For product managers

Personal

1. What are your main duties and responsibilities?

2. What is your experience? For how long have you been working in your cur-

rent role?

The requirements process

3. Draw the requirements process on the board based on how you perceive it.

How do product managers decide on what functionality that is to be devel-

oped? Based on what is this done? Who are involved in the process? How

are the requirements sent to the development teams? What is documented in

the process?

4. How do product managers prioritize different tasks against each other?

5. How do product managers keep track of the features that are available in the

platform?

6. Do you experience any problems due to the process of documenting re-

quirements?

Interface towards development teams

7. How do product managers communicate with the development teams?

8. On what level are the requirements that the product managers send to the de-

velopment teams? Is some information missing? Is it a problem?

9. Are there any required conditions that determine how the order should be

written (e.g. level of detail)?

95

10. How do the projects refine high level requirements? Are the refined require-

ments stored anywhere and are they communicated back to the product man-

agers?

11. How do the projects validate their output with the product managers?

12. Do the projects create prototypes in order to facilitate discussion with the

product managers?

Documentation

13. Which documents are used in the contact between the product managers and

the projects?

14. Which documents do you use and how often do you use them?

15. What is the purpose of each document? Are all the documents and parts of

the documents necessary?

16. Do the documents contain any duplicated information?

17. Is the quality of the documents good enough to let everyone work efficient-

ly?

18. Are you missing any documentation that could have been useful to you?

19. What requirements documentation (that is kept up-to-date) do product man-

agers have? How do product managers keep track of what the products can

do?

Knowledge sharing

20. How do you do when you need to know the functionality of the software?

Would more documentation be useful in this regard?

21. Do you have to answer many questions about how the software is working?

Who asks? Is it a problem?

22. Are there any typical questions? Could these questions be answered through

documentation?

23. Would you save time through documenting the answers rather than to answer

them yourself? Would the person asking the question save time? Overall,

would the organization benefit from documenting more?

24. Would it help you if other employees documented more? Would you rather

go through documentation than ask questions? Overall, would the organiza-

tion benefit from documenting more?

25. Is it possible to find out why a feature behaves the way it does? If not, is this

a problem? Do you need to know this?

26. Do you see any risks, with regards to scalability, to keep working the way

the company does with requirements documentation?

27. How do product managers communicate with QA? How do QA know the

correct behavior of the software when testing it?

28. How does your department introduce new employees? Do they experience

any problems due to the amount of requirements documentation that is avail-

able?

29. How is knowledge about changes in the software’s behavior communicated

to stakeholders?

30. Do you think any knowledge that is shared verbally needs to be document-

ed?

96

31. Do you think it is a risk that much knowledge about the software platform is

individual and not documented anywhere?

Other

32. Do product managers have any process that addresses quality requirements?

If not, how are these handled?

Extra

33. Do you experience that others complain about the documentation?

34. Is project specific documentation maintained? Why/why not? Do you need

to maintain documentation to the extent that you do?

35. Do you experience any other problems relating to the amount of require-

ments documentation?

36. How is the platform organization affected by the product organization?

97

C. Organizational distribution of interviewees

The distribution of the interviewees is found in Figure 7 below.

Figure 7. The distribution of where data was gathered from in the organization.

98

D. Assertions

In this section, the assertions (high level statements), extracted from the statements

in the data analysis phase, are presented.

D.1 Tags from Firmware Platform

 Tests are in some way regarded as requirements

 Tests show what the software can do, rather than what it should do

 Some knowledge about the platform is individual, which is generally seen as

a risk if people quit

 Axis has chosen to have “fleeting” requirements rather than a requirements

database

 The order specifies how the software should work (requirements) whilst the

PFD specifies how it is working

 Some developers think answering questions takes too much time, which in

some cases has made them document answers to typical questions

 Questions (e.g. about functionality) can sometimes be answered by reading

code or documents but there is always the possibility to ask someone. Asking

someone seems to work quite well

 Functionality in previous releases can be found through flashing a camera

and testing it

 People experience difficulties in knowing whether a functionality's behavior

is correct or not

 Project specific documentation (e.g. order, SWO, backlog, PRS) are not up-

dated after the project ends

 The PFD and the VFD lives on after the project ends and should always re-

flect the current functionality

 Integration notes describes which features that has been changed by a project

and are sent to the LFP program upon release

 Documents are not stored in a common repository and are in general hard to

find

 In some cases developers are not aware of how other departments work and

what documents they use

 Developers write and perform unit and function tests during implementation

 Developers would like to have quick feedback on their implementation, e.g.

through automatic testing

 Requirements are broken down using the order as a starting point

99

 Requirements are generally broken down through discussions in the team

and with the orderer, facilitating knowledge sharing

 Even though the teams try to break down requirements through discussions,

sometimes individuals start coding right away

 The development teams have started to use backlogs (owned by the orderers)

containing prioritized activities

 Documentation on why certain decisions were taken has been nonexistent

(which has been a problem), but some teams have started to document their

decisions on their project site

 Why certain functionality exists and why it behaves in a certain way are

common questions, which have to be answered by individuals since they are

not documented

 The VFD is seen as a sort of requirements, which can aid the developers

 The VFD is often considered to be important and of good quality, but not

everyone uses it

 The public API specifications are similar to the VFD and are sometimes used

as a substitute

 The VFD is also used outside of development

 There is a separate group that decides on API changes

 The SWO is written based on the order, with the purpose to discuss and ex-

plore what areas/persons are affected by a project

 The SWO is used as a way of letting the orderer know what the project in-

tends to do

 Communication between CBAs is facilitated by the work with the SWO, but

does not seem to be dependent on it

 The SWO is considered important and well defined, but is not used a lot (and

maybe not updated) after its review

 In practice, the SWO might not always be used

 You do not know what you want to change in the beginning of the project

when the SWO is written, which makes it difficult to write the SWO

 Just talking to the relevant persons could probably replace the SWO, with the

benefit that those persons can give early feedback (which reduces the risk of

late changes)

 Asking questions is most of the time perceived to be better than reading doc-

umentation and leads to positive side-effects such as improved networking

and knowledge spread

 The culture at Axis is open, meaning much knowledge is spread in a word-

to-mouth fashion

100

 Many people stay in the company for a long time, e.g. making it easier to

find experienced persons

 Function teams help spreading knowledge across the team, thus reducing the

dependency on single persons

 Writing and maintaining documentation can be time consuming, e.g. due to

reviews and re-reviews

 In general, developers want to minimize the amount of documentation

 Developers have different opinions about the usefulness of documentation

 Developers do not like to write documentation and would rather get to work

(code)

 Basically all the documents are required due to the Axis project process

 The documentation process is not always strictly followed, e.g. not everyone

updates the documents after changes

 Verbal communication is used as a complement to documents, reducing the

dependence and need of documentation

 Developers want information to be up-to-date, correct and applicable, find-

ing incorrect documentation to be more irritating than no documentation at

all

 The need for communication could be reduced if developers could trust that

documentation is up-to-date and contains what they need

 The order generally contains high level requirements

 The orders are in many cases vague and unclear

 Missing parts in the orders have sometimes halted the project progress

 Unclear orders increase dependence on the orderer

 An unclear order may give an unclear PRS

 When the order is unclear some effort should be put towards clarifying it ear-

ly in the project

 An unclear order is not always a problem

 The order should contain a motivation, e.g. use case, for the requested func-

tionality

 Project specific documentation is saved after a project has been closed, but

the documentation is not maintained

 The orderer can be a product manager, a system architect or a CBA

 Wishes from other stakeholders are channeled through the orderer

 The team and its orderer works out what a project should do iteratively and

in collaboration

 The orderer frequently participates in the project meetings, e.g. discussing

and prioritizing the requirements

101

 The development team plans its work together with the orderer

 The development team breaks down the requirements in the order through

discussions, both internally and with the orderer

 The project documents (SWO, PFD and PRS) and constant discussions are

used to validate the project's ideas towards the orderer

 The project performs demos with the orderer with the purpose of getting ear-

ly feedback on its work (e.g. catching changing requirements faster)

 Having demos more often means shorter time to feedback

 Demos does not assure that the orderer will not change his mind later any-

ways

 Demos may not be appropriate for some projects, e.g. in technical (non-

visual) projects

 The project creates use cases by themselves or in cooperation with the order-

er

 The project is very dependent on the orderer being available

 A lacking communication between Product Management and the project can

lead to unnecessary rework

 The orderer does not always work closely with the project

 The orderer lacks a clear scope of what he/she wants, leading to changing re-

quirements throughout the project

 When asking product specialists or product managers ”how should it work?”,

a common answer is ”it should work as before”

 Product Management does not keep track of all details, leaving some of that

responsibility to developers

 Technical writers base their work to some extent on documentation

(CD/PFD/VFD)

 The PFD is a document describing/showing how functionality currently is

working, on a relatively high level

 The PFD is used outside development, e.g. by QA and in the communication

between orderer and project

 The PFD is reviewed by the team and other stakeholders

 The purpose/usefulness of the PFD is often not clear to developers, e.g. caus-

ing them to forget about it as well as complain about having to write it

 To some developers it is not clear what should be in the PFD or how it

should be written

 The PFD might not be applicable for all projects

 The quality of some PFDs is lacking (e.g. outdated)

102

 The development team creates estimates on project duration, e.g. based on

the requirements in the PRS

 It is difficult to create reliable estimates, due to changing requirements and

difficulty in specifying the requirements up-front

 Incorrect estimates cause postponed integration dates, which is an issue

when coordinating many teams' integrations

 Product Maintenance sometimes needs to ask the developers (CBAs and

CBMs) for help when fixing CSTs

 Normally, Product Maintenance does not use the PFD or other documenta-

tion

 The growing platform makes it difficult for Product Maintenance to keep

track of all the functionality, which means Product Maintenance tries to split

up in smaller more specialized teams

 The project creates the PRS based on the order

 The PRS is reviewed by the orderer and other project stakeholders

 The PRS is often not used in the projects and has in many cases been re-

placed with a backlog

 In some projects the PRS was basically the same as the PFD and the VFD

 The PRS specifies requirements and the project deliverables

 It is pretty clear what the content of PRS should be

 In general, developers do not use the PRS during the project after it has been

written and approved, since they already know what should be done at this

point

 Developers do not see the use of creating the PRS (more than to pass a toll-

gate)

 If the PRS was more detailed developers could use it when writing tests

 The PRS is used for communicating what the project is/was supposed to do

with stakeholders, e.g. the orderer

 The PRS is not always updated during the project, leading to people not

trusting it and rather asking someone instead

 The PRS is used more during product development (NVP) than software de-

velopment

 Each project team has dedicated QA resources who participate in team meet-

ings and tests the team's output

 The dedicated QA resources that participate in team activities facilitates

communication, e.g. of what/how to test something

 The team aids its QA resource with writing/reviewing test cases, e.g. in order

to confirm that the test cases are in line with expected behavior

 Changes are communicated to QA through tickets and release notes

103

 The team's QA resource reviews the PFD and the VFD

 QA uses the PFD as a help when writing test cases, and might not even start

writing test cases until it is done

 QA sometimes uses the PRS when creating test cases

 Sometimes QA are not notified of changes in the software

 It is pretty common that the development team gets incorrect tickets from

QA because QA has misinterpreted the expected behavior of the software

 The values of the quality requirements (e.g. performance) are somewhat arbi-

trary and it is often unclear what they are based on

 There has often not been any quality requirements specified for a project,

however, the development teams has started to measure performance to

make sure it does not deteriorate over time

 QA is seen as the ones being responsible for checking quality aspects and

making sure they do not drastically deteriorate

 If a quality related test case fails attention is directed towards it, although it

might be decided to let it be as it is

 The orderer decides on quality requirements and are sometimes aided by the

CBA in the process

 Generally the software quality is pretty high compared to other companies,

but occasionally complaints has been raised by the customers about perfor-

mance issues

 There are projects focused on quality aspects (e.g. scalability and perfor-

mance)

 The orderer sometimes needs to change quality requirements since the initial

ones were not feasible

 Performance differs greatly between different products

 Quality aspects has become increasingly important

 The CBM is responsible for the functionality of his code blocks, making

him/her a primary source of information regarding functionality and changes

to those code blocks

 The CBM does not always have detailed knowledge of his/her packages

 If the CBM is unavailable, there are other people who have the information

 The CBA has overall knowledge and responsibility of an architectural area,

making him/her important as a coordinator and information source

 The CBAs mostly have discussions based on need, rather than regular meet-

ings

 The CBA keep a frequent communication with NVP, since NVP talks to the

CBA when they change/wonder something about his/her areas

104

 The project managers are responsible for the creation and maintenance of the

PRS

 The CD is written (and owned) by product management and then iterated

with the development team

 The CD describes the high-level characteristics of a feature

 The CD contains duplicated information from the PFD and VFD

 The CD might replace the PFD, but it also might not be used in the future

D.2 Tags from QA

 The fact that someone from QA is part of the development team works well,

e.g. since it improves the communication between development and QA and

also the quality of the test cases

 The TAM and the development team cooperates in the creation/updates of

test cases and in the refinement of requirements

 The TAM feels that asking questions to developers is more useful than read-

ing documentation and probably solves more issues

 Does not think it is possible to get the orderer to write better requirements

and to get him to maintain the documentation, at least not after the product

has been developed

 The orderer does not know in detail what they want until the end of the pro-

ject, which causes them to solve the problem they want to solve rather than

the solution to the problem

 Thinks it might be good that the requirements are quite poorly specified

since it makes the developers and testers to try to understand what product

managers really want. This makes them less dependent on product managers

to micromanage them

 Wants to use web pages for specifying tests, making them readable for or-

derers who then can judge if they are correct or not (behavior)

 It is unclear whose responsibility it is to update the CD, resulting in it being

outdated

 TAMs are in cooperation with developers writing tests that specify the in-

tended use a feature, outside which Axis does not promise to provide support

 Sometimes think the content of the PFD is unclear

 At NVP, the PFD does not seem to be updated always (at least not on the

project website). This is not necessarily needed but QA would at least want

to be notified when changes has been made so they can update their test cas-

es

105

 Missing PFDs can be a bigger problem than outdated PFDs, e.g. leading to

late discoveries of functionality in testing or difficulties to discover incon-

sistencies in the web GUI

 People in QA have different opinions regarding the necessity of the PFD

 The abstraction level of the requirements in the PRS differs greatly, leaving a

lot up to the individual’s own interpretation

 The quality of the PRS depends on which project and project manager that

has written it, but in general it is not very good, making QA’s work ineffi-

cient

 The PRS might not be updated toward the end of a project and different pro-

jects are different good at updating it when changes has been done

 The perceived usefulness of the PRS differs among testers

 In agile projects user stories and use case has replaced the PRS, seemingly

making the TAM’s work easier

 Newly employed think better documentation will solve all problems, but

more documentation can increase the risk for mismatches between docu-

ments and actual products, which are cumbersome to work out

 When documentation is lacking, discussions are held with the developers

 Face-to-face communication is generally better and more useful than reading

documentation, but one tester that is not part of a development team feels it

is not optimal

 Documentation is good for handshaking purposes and as tools for communi-

cation, but its usefulness is limited after it has been agreed upon. This means

it should not be maintained

 Too much documentation might make people lose focus on what really mat-

ters (products, tests and human communication)

 Since QA find it difficult to know what functionality is supported in a certain

product/firmware, more tests than necessary are often included leading to

quite a lot of time being wasted on evaluating if a test case is applicable or

not

 People outside QA also review the test cases in order to ensure requirements

have been interpreted the same way

 Occasionally test cases are not correct, but that is not necessarily a problem.

Instead it is being solved through tickets, which is just another way of com-

munication that gets you quick answers

 Some people at QA only use the intranet’s project pages (and not Git) in or-

der to find PFDs, creating the risk that they use old PFDs

 It is hard to get an overview of the PFDs, which has created a wish to collect

them all in one place and add traceability to where they came from

106

 Knowledgeable individuals are important and losing one will result in a

knowledge loss, however it might be hard to solve this problem through doc-

umentation

 Usually several persons can answer a question, but when no developer

knows the answer one of them may have to dig into the code to find the an-

swer

 One NVP tester finds the traceability between tests and requirements lack-

ing, saying it is hard to do due to e.g. missing/scattered documentation and

inconsistent numbering of requirements

 Because many test cases cannot be mapped to requirements, those test cases

become the de facto requirements

 It is common to have comparative quality requirements (not worse than x,

better than y), which are perceived as vague. However, the opinions about

whether this is good or not differs

 QA is starting to measure quality aspects in a database, in order to be able to

monitor the development of different aspects over time

 There is a confusion regarding what is “right” when it comes to quality re-

quirements

 QA feel they are made responsible for “creating” the quality requirements

There have been some issues with quality aspects, e.g. time consuming for

QA to “find out” what quality levels are ok and performance issues when

more functionality have been added without scaling up hardware

 Some person in QA is worried about not having clear goals for quality as-

pects (feeling restricted to just measuring what the camera “can” do)

 QA discusses with developers and read documentation (e.g. PRS and PFD)

when creating test cases for new functionality

 QA uses old test rounds, documentation (e.g. PRS, SWO, user manuals,

product notes) and own judgment when deciding what tests to include in a

test run

 The introduction of TAMs has improved the test cases without any addition-

al documentation, likely due to the closer communication with the develop-

ers

 Currently QA does not develop unit tests, since they are more focused on

testing at system level

 There is an opinion that tests and products are enough ”requirements docu-

mentation” and that having a requirements document only produces more

overhead, but everyone does not believe it

 Generally QA feels that its test cases are defining the requirements, at least

in many cases

107

 Even though the company works in a test driven way, pure TDD is not feasi-

ble since the tests need to evolve alongside the code

 It is common to use benchmarking as a big requirement, e.g. product x

should be as product y but better

 ”Benchmarking requirements” are currently difficult to test and might pose a

serious scalability challenge in the future

 One person thinks that “benchmarking requirements” are a good thing, e.g.

making it easier for a product manager to specify what he/she wants

 One tester feels that it will be hard to verify if the set of functionality that has

been switched on in a product is the right one, when the software is used as

an oracle

 There is an opinion that documented requirements should be temporary (for

various reasons, e.g. reduced maintenance effort and avoidance of literal in-

terpretations) and that the focus should be on the product as requirements

 Currently a feature list is being developed, which will be a collection of all

the different features available in the platform. Each feature will likely be de-

fined by use cases and corresponding test cases

 From the “big” feature list (being developed), each product is supposed to be

able to generate information about its own features for those who want to

know what the product is able to do

 Having automatically generated product information will make it easier to

keep track of the difference between products (aiding “benchmarking re-

quirements”), but then the software in the product must not be wrong since it

in that case will be the “oracle”

 People will focus on doing things that benefit themselves rather than others.

Getting people to actually do something that benefits someone else is hard

when they have stuff to do that benefits themselves

 People feel uncomfortable and get angry at the orderers for changing their

minds. However, the real problem (according to one person) is people’s atti-

tude toward agile

 The culture at Axis is very open and encourages people to talk to each other

(even between departments), thus facilitating close collaboration

 Some people feel uncomfortable when talking to others and would much ra-

ther have clear instructions on what to do

 The fact that requirements are specified in an unclear way does not neces-

sarily have to be negative, since it makes people talk to each other and lets

them be creative

108

 One risk of using verbal communication to communicate requirements that

are not documented is that other testers needing the same information are not

notified about it

 A requirements database or big requirements documents for each product

would be useful to QA, but many are worried that it would cost too much to

create and be burdensome to maintain

 QA feels they have to weigh up for a lack in specifications of requirements,

since they have to create test cases anyways

 There has been issues because errors are found late, which has caused Axis

to try to push testing “upwards” in the development process (so tests are exe-

cuted earlier) e.g. through introducing TAMs. Still, sometimes a lot of de-

velopment is done before QA can test

 Long feedback loops in development have been an issue, since developers do

not have the code fresh in mind after it has been sent to QA and then back to

them

 QA have been focusing on black-box testing, which has not been useful for

the developers, but are now developing automated tests

 Automated tests will give the developers quicker feedback, since they can

run the test cases by themselves, and also enables testing on a deeper level

than QA usually does (e.g. testing APIs)

 NVP test finds it difficult to know what functionality there is at the firmware

platform

 Different parts of the organization use different names for the same feature,

which has caused confusion

 It is really important that engineers understand the bigger picture (business

model, customer needs, etc.), which is reflected in the engineer career ladder

 The perception is that the quality of the software at release is good, e.g. due

to rigorous testing

 The open climate makes it easier for new employees, although it can be dif-

ficult to know who to ask when wondering about functionality

 Would like product notes to be available earlier in the project since QA uses

it when writing tests, but has met much resistance when asking for this

D.3 Tags from product managers/specialists

 The product managers create strategies for their own areas through prioritiza-

tion of different ideas during the roadmap work. The prioritization is based

on the viewpoint of the overall business strategy developed by management

109

 Some people expect very detailed requirements, e.g. R&D has historically

wanted very clear orders

 Product managers prefer to express requirement in use case or problem form

 Orders from architects are probably more detailed than from product manag-

ers

 Orders from product managers for video products are more detailed

 The people in Product Management need to keep a good sync on what they

are doing, since they have different opinions on quality priorities and chang-

es to one part affects the whole platform

 The orderer does not want to specify details about behavior, e.g. because

there is a risk that the team over implements the details and because he rather

spends his time keeping track of the market needs

 CBAs can sometimes be orderers for a project

 One orderer prefers to work closely with the project in the beginning to bet-

ter aid their understanding of the project, since the order is on a high level

 A high level order causes one product manager to have a greater dependence

on an experienced project manager to break his requirements down

 One orderer feels that a high level order gives the project and its orderer

some flexibility to change scope and puts the choice of solution into the

team’s hands

 Inexperienced teams who are used to more detailed orders have more issues

with a high level order, resulting in greater dependency on the product man-

ager

 The orderer follows projects in order to see if they have interpreted the order

correctly, thus making sure that they are on the right track

 To reduce the risk of implementing the wrong thing, the project conducts

workshops together with the orderer, writes a PAD which he looks at and

conducts prestudies

 The SWO helps a project to get its initial questions down on paper, which

the orderer then can follow up on to see the progress of the project

 Generally, the software produced in a project reflects the orderer's wishes

 One product specialist finds the PFD rather technical and hard to read

 One product specialist mainly uses mail/direct contact (but also the PFD)

when uncovering the content of a release

 The PFD is not very useful for product managers who are not interested in

the web interface (the customers of 80-90 % of all sold cameras do not use

that interface)

 PFD and CD cover roughly the same needs

110

 QA base their tests to some extent on CD/PFD, but writing tests for every-

thing in those documents can be hard

 The introduction of CD was not perfectly smooth, which has caused several

things to be changed down the road

 The product managers will be the owners of the CDs

 Product Management sees the CD as important and useful, both as a

knowledge base and as a 'sync' document

 The CD is seen as a replacement to both PRS and (at least parts of) the PFD

by a product manager

 One of the uses of CD is to 'sync' Product Management with developers with

testers, e.g. achieved through collaboration in writing the CD

 The PRS is too detailed for product managers to use, since it is hard to see

the bigger picture from all the detailed requirements

 Product specialists have some contact with QA since they handle customer

issues

 Product managers have a lot of communication with technical lead

 The orderer participates in some of the team's activities in order to follow

their work and answer questions

 Internally, Product Management has meetings as well as informal communi-

cation

 When a CBA is the orderer, he/she syncs the project progress with the sys-

tem architect

 CBMs are notified before developers make any bigger changes to their code

blocks

 You want to ”force” the right people to talk with each other at the right time,

exactly how you do it is not important. E.g. it can be done through writing

and reviewing a document

 The organization is built around the idea of very frequent communication in-

side the function teams, but as limited communication between teams as pos-

sible (e.g. through architectural delimitations and APIs)

 The CBA have knowledge about the details in his area, how it works and

why

 Different people want to work different ways, for example some project

managers want more detailed orders – it is hard for product managers to

know what level of requirements is appropriate

 Product managers want developers to think for themselves and understand

the ”receiver's” (e.g. customers) situation in order to develop good software

 Developers are often not aware of all the areas where a document is used,

causing them to not see the full purpose of the document

111

 New products have a more defined quality testing (mandatory quality tests)

than new firmware/feature versions, indirectly also testing the firmware

 Other than the basic quality tests, there is no special process for managing

quality requirements. Instead, questions about quality are handled from case

to case based on the opinion of the product manager

 Measurement of performance have enabled following the development of

performance over time, making those aspects more manageable e.g. catching

bad performance trends easier

 The product manager does not see any tendencies for scalability issues in the

processes, but he feels that the main risk is that things are documented for

the sake of the process

 As the platform increases, it gets harder and harder to have people working

broadly on it

 Scalability is to an extent handled through managing team size and structure

(which also means managing the architectural structure), splitting teams

whose area grows too large

 There is not one place where you can find detailed information on what a

given firmware for a product actually can do

 It can be hard to find out the purpose (e.g. who requested it) of a certain

functionality, but it would probably not be viable to document it

 It is hard to know what products use what firmware versions and which

firmware versions that have which functionality

 Creating ”supported” use cases would make it easier to answer detailed cus-

tomer questions, since they are ”on their own” if they go outside of those use

cases

 Somehow being able to find out the purpose of a feature, why it was done,

how important it is and what was agreed on is helpful in keeping track of

what is the correct behavior and prevent QA from ”driving” requirements

 The quality of existing documentation is good, but there are some areas that

are missing. This is being solved through writing documentation when

changes are done in undocumented areas

 In general, the current process feels adequate with regards to documentation.

The problem is rather that people does not follow it

 The projects have some freedom in what documentation they want to use,

but there is a basic amount of ”process documentation” which is mandatory

and may only be removed through an agreement with all users of a document

 Having a single process that suits many different teams is risky since the

process elements may not be based on needs in all instances

 Agile is preferable for an orderer mainly since it gives flexibility

112

 Demos or CD are much more useful than a list of requirements to the prod-

uct manager

 Estimates are rough at road map level and more certain once the project has

gathered enough knowledge to give its own estimate

 Estimates are important in order to be able to choose the best activities from

a business perspective. This also means that you can prioritize and do the

most important things first (and possibly remove the less important things if

the project gets delayed)

 The unit and function tests ”specify” the correct behavior to the developers

